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Nataticns and Definitions

What are we studying in this chapter?

/ > Concept of sets and set notations
; Definitions and the notations of alphabets, strings, sub strmg,

prefix suffix, language
Various operations on strings such as concatenation,
reversing a string, length of a string and various problems.
The positive and star-closure over alphabets
Definitions of

»  Grammar

= Derivation

= Sentence
Sentential form
» Various applications of automata and formal languages

\_ B

- 1.1 | Sets and set notations

In thlk section, let us answer the question “What is a set?” Give the example

vV VY

Definition: A set is a co]lectlon of distinct elements. All the elements of the set should be
enclosed between ‘{’ and ‘}’ separated by commas. The sets can be represented using
variotss methods as shown below:

! ‘— By listing all the elements of a given set

Set ;il_gepresentation —1—» By describing the properties of the elements

—»  Using recursion
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Note: If x is an element in the set S, we write x € S. If x is not an element in the set S, we
write x € S. The sets are denoted by capital letters such as A, B, C,...etc and the
elements within the set are denoted by lower case letters such as a, b, c etc. :

By Iistlng the elements of a given set The set of positive integers greater than 0 and less
than or cqual to 25 which are divisible by 5 can be represented as
.S ={5, 10, 15, 20, 25}

The elements of a set can be in any order. The above set can also be written as
+ S =1{10, 20, 5, 25, 15} '

Note: Observe that no elements are repeated in this set. Tfns representatlon is useful if
the number of elements is less.

The set shown in example 1.1 can also be represented by descnbmg the properties of the
elements as shown below:

By describing the properties of elements of a set The set of integers greater than 0, less
than or equal to 25 and which are divisible by 5 can be represented as

S = {5x | x is a positive integer where 0 < x < 5}

Using recursion The set of integers greater than 0, less than or equal to 25 and Wthh are
divisible by 5 can be represented as :

S={ap|a =5, aj,; =a;+ 5} where a; <= 20. Here, the symbol ‘|’ means “such that:; )

1.2 Other definitions

In this section, let us see “What is an empty set?

Definition: A set which has no elements is called an empty set or null set and is dedoted
by { } or ¢. For example, the set S that does not contain any element can be represented
as shown below: : - _ ) H

S={}orS=¢
Now, let us see “What is a subset?” -

Definition: A sef A is a subset of B if every element of A is an element of B did is
denoted by :
' ACB
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IfA ; B and B contain an element which is not in A, then A is a proper subset of B and
is denoted by A C B. : ‘

Now, let us see “When we say that two sets are equal?”

Defit:ion: The two sets A and B are same (i.e., A=B)iff ACBand B C A i.e, every
element of set A is an element of set B and every element of set B is also an element of
set A. For example, if

A={ab,c}and B={a, b,c}then set A=B.

Now/ let us see “What is a power set?”

i

Def(iiﬁtion: Let A be the set. The set of all subsets of set A is called power set of A and is
denoked by 2%, : '

Example: Let A = {1, 2, 3}. The subsets of the set A are shown below:
{1}, {2}, 3}, (1.2}, (1,3}, {2,3}, {1,23}, { }
Thp set of these subsets is called power set and is denoted by 24,

i}, 28 = ( {1}, {2}, 13}, (1.2}, {13}, {23}, (123}, { }}
i

subsets of set A. In the above example, |A| =3 i.e., the number of items in A and

Note: |A| denotes the number of elements in set A and |2%| denote the number of
| 2A[ ‘= 8 i.e., the number of items in 28,

Now, let us see “What is Cartesian product (cross product) of two sets?”

|- |
Definition: The Cartesian product of A and B is given by A X B = { (a, b)lae Aandb
€ BJ). Here, (a, b) is an ordered pair such that ‘a’ is an element of set A and ‘b’ is an
element of set B.

Exaﬁ!ple: Let A #»{a, b,c}, B={0, 1}. The cross product of A and B is given by
Y AxB={@0), 1), 60), b1, €0} 1) }

13 | Operations on Sets

Lo . .
The various operations that are carried on sets are shown below:
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—» Union
— Intersection

rations on sets ——{
Ope — Difference

— Complement # !

. Now, let us see “What is union of two sets and intersection of two sets”’ blve

example

Definition: The union of two sets A and B is givenby AUB = { x | XEA or xe B}

Example: Let A = { a,‘b', c} B={0,1}. Union of A and B is given by ‘ 3 =
 AUB={abc0,1) |

Definition: The intersection of two sets A and B is given by

ANB={x|xe Aand xe B}
which is the collection of common eléments in both the sets A and B.
Example 1: Let A={a,b,c} B=/{c,d,e }. The intersection of A and B is given by

={ {a,b,c} Nn{c,d, e} }
={c}

A

Note: If two sets A and B have no common elements then the two sets are called DlS_]Olnt
Sets.

Example 2: Let A = {a, b, c} B ={0,1}. The intersection of A and B is given by ol

ANnB={{ab,c}n{01}}
ANB=¢

-

Now, let us see “What is the difference of two sets? What is complement of a set_?‘
Definition: The difference of two sets A and B is given by
A-B={x|xe Aandx ¢ B}

Example: Let A = {a, b, ¢, d} B = {a, d}. Obtain A - B.
A-B={{ab,c,d}-{ad)}]}={bc)
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Deﬁl;utlon The complement of A is denoted by A and is defined as a set contammg
everfthmg that is not in A. Formally, complement of A is defined as follows
z

1
I8

A =U-A where U is the universal set. i.e.,

A ={x|xle Uand xg A}

Example: Let U= { 123456 ) A={ 12 }. Obtain A
! _ _

2,3,4,5,6}—{1,2}‘
4,5,6}

14 | Strings and Languages

U-A
{
{3,

i H

A laaguage consists of alphabets from which the words, statements etc., can be obtained.
The &et of alphabets of a particular language is denoted by the symbol Z. .

Example The alphabets of C language has the letters from A to Z, a to z, digits from Oto
9, sylnbols such as +,-,%,1,(,),{.,},etc. and is denoted by
= {ab_....z,A,B,...Z,O,l,....9,#, 6L <> L) }

Noteé: The symbol X is used to denote the alphabets ofa language.

Note;. The machine Language is made up of only 0’s and 1’s and so, the alphabets of
machme language can be represented by
; ={0,1}

N ow?, let us see “What is an alphabet? What is a string?” Give examples

Deﬁttion An alphabet is a finite, non empty set of symbols. The symbol Z is used to
denote an alphabet. For example, = {0 1} may denote the-alphabets of machine
language

Defipltlon A string is a finite sequence of symbols from the alphabet . The number of
symbols in string is finite. An empty string is denoted by the symbol € pronounced as
epsﬂfm (or ) and note that € ¢ .

Exalhple: Let X = {0, l} is set of alphabets. The various strings that can be obtained

from X are ‘ :
L {0, 1, 00,01, 10, 11, 010101, 1010............ }
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Note: Note that an infinite number of strings can be generated from Z and once i
the string is generated, it has finite number of symbols in it and has a definite | -
sequence. ’ » i

Notations used: Normal notations used in this subject are shown below:
¢ The symbol € is used to denote an empty string. »
¢ The lowercase letters a, b, c,....., along with the symbols such as +,-,(, ) {,.. aregused

to denote the symbols in Z ‘ ' .
¢ The lowercase letters such as u, v, w, X, .... Are used to indicate the stringsfs For

“example, we can write
w = 010101

where the symbols 0 and 1 are in Z and the letter w denotes the string with a sp¢cnf1c
value.Now, let us see “What is concatenation of two strings?”

Definition: The concatenanon of two strmgs u and v is the string obtained by appéﬂdmg
‘the symbols of v to the right of u i.e., if i
U= 2;3a3.....3, '
and o 5
’ v =bybsbs......bm : '

then the concatenation of u and v is denoted by
uv = a,aas.....aab;bsbs...... bm

and u is called the prefix and v is called the suffix.

Example: Let the two strings « and v be
u = Computer.
and
' v = Science

The concatenatlon of u and v denoted by uv will be 3
uv = ComputerScnencc

Now, let us see “What is sub string? What is suffix? What is prefix?” Give exanple.

strings of string w. The sub stnng x is called the preﬁx of wi.e., A prefix is string of
number of leading symbols g
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i

(empty strmg) z, yz and xyz “In‘the string “Rama”, €, “R”, “Ra” , “Ram” and “Rama” are

€6, % &k R A N 13

the p fixes and the strings €, “a”, “ma”; “ama” and “Rama” are all the suffixes. = .
No te IfX={0,1},then
Zo— {€} denote the set of words of length 0.
= {0, 1} denote the set of words of length 1.
ZZ ={00,01,10,11} denote the set of words of length 2.
= {000,001,010,100,011,101,110,111} denote the set of words of length 3.

and SO on.
NO\M, let us see “What is Kleene closure(star closure or X" ) ?” Give example.
Defi‘hitlon The Kleene closure is deﬁned as follows:

; 3" =3%0U 2! U 2 U---- which is the set of words of any length (possibly €i.e., the
null strmg) Each string is made up of symbols only from X.

Exn@ple Let X ={0,1}. Then X' is obtamed as shown below

) = {e 0,1,00,01,10,11,000 ,001,-----} is the set of strings of 0’s and
' . 1 s of any length which may include € (epsilon) i.e., the null string.
No“ii,_let us see “What is Kleene positive (plus) closure?”’
Defiliition: The positive closuré dendted by * is defined as follows.

= sluz?uiu....... which is the set of words of any length except the null
striq'g i.e., € (epsilon).

Emple Let £ = {0, 1}. Then >* is shown below:
| = {0, 1, 00, 01, 10, 11,000, 001, ...... } is the set of strings of 0’s and
1 s of any length except the null string. .

Note* 3" = =* + €. This can be written as Z* =% ¢ (See the above examp]es for clarity).
Now, let us see “What is a language?” ‘

Deﬁnltlon A language can be defined as a set of strings obtained from =" where X is set
of a]phabets of a particular language. So, if L is the language thenLc Z'. So,a language
is aSubset of =*. For example,
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I. A language of strings consisting of equal number of 0’s and 1’s can be
- represented as
{¢,01,10,0011,1010,0101,0011,....}
2. The language of strings consisting of n number of 0’s followed by n number. @f
1’s can be represented using the set as shown below:
- {¢,01,0011, 000111,...... }
3. Anempty language is denoted by €..

Now, let us see “What is reversal of a string?”
s
Definition: The reversal of a strmg is obldmed by writing the symbols in reverse: Qrder
ie., if
u= a|a2a3 a
then the reverse of u is denoted by u® and is given by
UR = @pap-13p-2....43223)

- So, if u is an empty stﬁng denoted by € anduhas only one symbol then,
=g , ,
at=a L +

et e i b el

The reverse of a stﬂng'ééﬁ be defined recursivel y as follows:
Defimtlon If a is the symbol and w is the string derived from the alphabet Z, the reverse
of a string can be defined as
] ifw=¢e
w=9a if‘w‘=a. ' —— o
(xa)f=ax®  Otherwise(i.e, if w=x)
for each a € T and eachl wez

Now, let us see “What is the length of a stﬁng"”

Defimtlon The length of a string u is the number of symbols in u and is denoted by [u]
Le.,if .

U= a,a3s.....3, !
then the length u is given by ‘ _ .

Juf =
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" The lbngth of an empty strmg eis0 and is denoted by
: lel =

Notet ew = WE=W

The Héngth of a string can be defined recursively as follows:

Defiqilition: If a is the symbol and w is the string derived from the alphabet Z, the length -
of a gtring can be defined as

|

i

{

’ . 0 - ifw=¢

| o

wl=4 1 ifw=a
|uaf=|u|+l if w=ua

for e;mh ac Tandeachu,we X

1.5 | Structural repr%entatlon
A ldmguage can be normally represented using the followmg notations:

- ¢ Grammar
. ¢ Regular expressions

The two notations play a very important role in the study of ﬁmte automata and their
appl catlons The finite automaton and their applications are discussed in detail in the
nextk chapter

Grammar It is a mathematical model which is used in des1gnmg a software. The
gr arbmars are mainly used

# To identify the syntax of a language (for example C/ C++ etc)

b To identify the syntax of a statement (for example, for statement, while-statement

etc) .
;0" To identify whether the expression is syntactically correct or not and so on.
In general, grammars are mainly used to identify whether a program written is
synictlcally correct or not. That is, they are used in the designing of a compller to check
whekher the program written is syntactically correct or not.

Noté The style and the notations used in grammar are entirely different than the
correspondmg finite automata. A programming statement such as for-statement, if-
statément etc can be easily modeled using a grammar.
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‘Regular expressions: It is also a mathemancal model which is used to represent the text
strings. The text strings can be easily represented using regular expressions. The patterns
of strings described by regular expréssions can be described. using finite automata. But,
the style and the notations used are entirely different when compared with ﬁmte
automaton and the correspondmg grammar. The regular expressions are dealt in detinl in
chapter 3 and 4.

O]
~omi {

1.6 Grammar : N

In this 'section, "let us see the definition of a grammar and how a language can be
constructed using the grammar. Consider the sentence “Monalika ate slowly”. In this
sentence the word “Monalika” is noun and is followed by the word “ate” which is a verb
and is followed by the word “slowly” which is an adverb. Thus, a sentence in this
example starts with noun followed by verb followed by adverb.- After replacing moun,
verb and adverb with appropriate words, a grammatically correct sentence cam be
obtained. The rules to form this sentence can be written as

sentence — <noun> <verb> <adverb>
_rioun — Monalika

verb — ate

adverb — slowly

The above four rules which are used to obtain the sentence “Monalika ate slowly are
.called productions. The words sentence, noun, verb, and adverb are called non- tenmlnals
or variables. Each production starts with non-terminal followed by an arrow followed by
combinations of non-terminals and/or terminals. The left hand side of ‘—’ in the first
production is called the start symbol (in this case it is the word ‘sentence’ ). The words
“Monalika”, “ate” and “slowly” can be considered as terminals. |
l

Note: The non- termmals can be replaced by string of terminals and/or non- termznals
whereas the terminals cannot be replaced or substituted.

The set of rules to form a sentence which in turn used to generate a language is
called a grammar. Here, a grammar G is 4-tuple or quadruple which consists of| the
following:

V is set of non-terminals viz., {sentence, noun, verb, adverb}
' : T is set of terminals viz., {Monalika, ate, slowly}
Grammar - Pis the set of rules called productions and B
S is start symbol which is “sentence” in this example.




Notations and definitions & 11

Now,. let us see “What is a grammar? lee an example The formal definition of a
gr animar is shown below:

i
i
s

Defihition: A-grammar G is 4-tuple or quadruple G = (V, T, P, S) where
¢ Vis set of variables or non-terminals.

"¢ Tis set of terminals

6 P is set of productions

} S is the start symbol

Eacﬂ production is of the form ot —  where o is a non empty string of terminals and/or
non+terminals and P is string of terminals and/or non-terminals including the null string
i.e., uis astringin (VU T)" and B is a string in (V U T)". This grammar is also called as
phaqe-structure grammar. '

| Note that g(epsilon) i.e., the null string cannot be there on the left hand side of any
productxon and so positive closure (V U T)" is defined for a, where as * closure (V U T)
is defined for B. Note that in the examples shown below @t is a single non- -terminal. When
o is a single non-terminal, the grammar is called context free grammar (CFG). ‘

Exaliple 1.1: - Consider the productions shown be]ow
= S — aCa
: C —aCalb
| _ _
i ‘Here, grammar G = (V, T, P, S) where

vV = {S§C}
"T = {a,b}
; P o= {
? S — aCa
‘ ' C — aCalb
}
S is the start symbol

Note: In productions, all the lowercase letters, digits or any other special
chat}acters such as (; }, +, -, $, etc., are considered to be terminals and all
uppercase letters are con51dered as non-terminals (or variables). If the symbol € is
used, it is neither a terminal nor a non-terminal. But, it is a special symbol
indibatmg the NULL string or empty string.

1.7 Derivation
Consider the production of the form
 A—>aAla
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and a string w of the form w = xAx. Here, the non-terminal A can be replaced by its right -
hand side i.e., either by the string aA ora. If A is replaced by aA, we get the strmg w of
the form
w = xaAx
This can be written as
’ XAx = xaAx

and read as the string XAx derives xaAx in one step (i.e., by applying one prodUctloﬂ) A
production can be applied any number of times in an arbitrary.order. A production can be
applied whenever it is applicable and successive strings can be derived. In geqerdl
cons1der the derivation of the form : i-

W = W) = W3 =5 ...... Wh ' i

The string w, is derived from w; and can be written as
i o ’ Wi = Whn i
Note: ' g *

1. The symbol “** in ‘2%’ indicates that unspecified number of productlons
(including applying no production) are applied to get the string w, from w;. {

2. The string w, derived from w, by applying at least one production can be
represented as < =

Wi =7 Wp j

The symbol + indicates that at least one or more productions are applied to get the string

wy from w,. Now, let us see “What is derivation?” The formal definition of derivation

is shown below.

. o

Definition: Let A — aByand B — B are productions in grammar G, where o, f§ and y

are strings of terminals and/or non-terminals, A and B are non-terminals. The hon-

terminal A derives the string oy by replacing the non-terminal B in aBy by the stnng B

by applying the production B — B and can be written as '
A= afy |

Thus, the process of obtaining string of terminals and/or non-terminals from the

start symbol by applying some or all productions is called derivation. If a string is

obtained by applying only one production, then it is called one-step derivation and is

denoted by the symbol ‘= ‘. If one or more productions are applied to get the stringlaBy

from A, theén we write ' '

A= offy

If zero or more productions are applled to get the string offy from A, then we write
A % ofy
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Notet If o is any string of terminals and variables then o 3 ati.e., o derives itself.

Example 1.2: Consider the grammar shown below from which any arithmetic expressmn

can be obtained.
; E — E+E
l E — E-E
E — E*E
E — E/E
E — id
The non-terminal E is used instead of using the word expression. The left-hand side of

the first production i.e., E is-considered to be the start symbol Obtain the string id + id *
id and show the derivation for the same.

1

Soluhflon: The derivation to get the string id +id * id is shown below.

! E = E+E

f = id+E
= id+E*E
— id+id *E
= id+id *id

Sinck the string id + id * id is obtained from the start symbol E by applying more
thanione production, this can be written as

1.8

E ='id+id*id

Sentence ;

Usmg the grammar, let us see “How to get a sentence?” Before proceedmg further let us
see “What is a sentence or sentential form?”

Defimtwn Let G = (V, T, P, S) be a grammar. The string w obtained from the grammar
G such that S =" w is called sentence of grammar G. Here, w is the string of terminals.

Example: In the derivation shown in example 1.2, id + id * id is the sentence of the
grammar. If there is a derivation S 2 o, where o contains string of terminals and/or

non-

terminals, then o is called sentential form of G. In the derivation shown in

example 1.2,

E+E,id +E,id + E*E,id +id *E, id +id * id

are all sentential forms of the grammar.
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1.9 Language

A given grammar can generate a set of strings consisting of only of terminals by applying
productions in different order. The set of such strings is called the language. Now, let us
see “What is the formal definition of a language accepted by grammar?” The formal
definition of the language accepted by a grammar is defined as shown below.

Definition: Let G = (V, T, P, S) be a grammar. The language L(G) generated by the
grammar G is '

LG)={w|S % wandwe T'}

i.e., w is a string of terminals (may be €) obtained from the start symbol S by app]yif)g an
arbitrary number of productions. The intermediate string of terminals and/or mon-
terminals obtained during the derivation process is called sentential form of G The
various strings which are the elements of L(G) are called sentences. s

Example 1.3: Let G = (V, T, P, S) where

vV = {§,C}
T = {a,b}
P = {
S — aCa
C — aCal|b
} .
S is the start symbol

What is the language generated by this grammar? |

Solution: Consider the derivation ‘ . ’ '
S = aCa = aba ( By applying the 1* and 3™ production )
So, the string aba € L(G)

Consider the derivation ‘ ) , ;
S=aCa By applying S — aCa
= aaCaa By applying C — aCa

= aaaCaaa By applying C — aCa Ny

= 2"Ca" By applying C — aCa n-1 times %

= a"ba" By applyingC — b

So, the language L accepted by the grammar G is ' N
L(G)={a"ba" |n2 1} g
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ie., t!he language L derived from the grammar G is “The string consisting of n
nquer of a’s followed by a ‘b’ followed by n number of a’s.

Exan‘?)le 1.4:  Obtain a grammar to generate integers

Soluiion: The sign of a number can be ‘+’ or ‘- or €. The production for this can be
writtén as ‘
| S—o+]|-|e

In the above production if € is derived from S, the sign for a number will not be
generated. A number can be formed from any of the dlgltS 0,1,2,....9. The production
to obtam these digits can be written as
Z ~ D->0]1]2]....... ]9
A nui‘nber N can be recursively defined as follows.

| 1. A digitis a number (i.e., N — D)
. 2. The number followed by a digit is a number (i.e., N — ND)

or
a digit followed by number is also a number (i.e., N — DN)

The pi'oductions for this recursive definition can be written as
N—-D
N — ND |DN

An integer number I can be a number N or a sign (an optional plus and a minus)
folloWed by number N. The production for this can be written as '
I-N|SN :
%
So, the grammar G to obtain integer numbers can be written as
G (V,T,P,S) where

.V = {D,S,N,I}

T = {+-0,1,2,...9}

I — N|SN \ [Generate signed or unsigned number]

‘ N — D|ND|DN [Generates one or more digits]
. ‘ S — +]|-]¢ [Generate the sign] '

D — 0]|1]2]...... [9 [Generate the digits]
} . .
S = I which is the start symbol
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" The unsigned number 1965 and signed number +1965 can be derived as shown
below: ‘ ' '

I == N I = SN .
= ND = +N i
= N5 = +ND ‘
= NDS5 * = +N5
= N65 = +ND5
= ND65 = +N65
= N965 = +ND6

. 5
= D965 = +N965
= 1965 ‘= +D965

= +1965

Example 15: Let 2 ={a, b}. Obtain a grémmar G generating set of all palindromes oﬁer 2.

Solution: The recursive definition of a palindrome along with corresponding productions
is shown below: ‘ ' .
1. €is a palindrome. The equivalent productions is S — €
2. “a and b are palindromes. The equivalent productions are S — a | b
3. If wis a palindrome then the string awa and the string bwb are palindromies.
The equivalent productions are
' S — aSa | bSb

So, the grammar to generate strings of palindromes over Y. is given by G = (V, T, P, S)
where ‘ ' '

(s}

V = A

T = {a,b}

P = |
S — ¢ [Definition 1]
S — alb [Definition 2]
S — aSa|bSb [Definition 3]

}
S is the start symbol

Example 1.6: Obtain a grammar to generate a language consisting of all§ non-
palindromes over {a, b} ' ‘



|

i ' Notations and definitions = 17
Solutlbn When we scan from left to right and right to left simultaneously, we may
find shme symbols for a while, but at some point while scanning we may find a
symbol on the left which is different from the symbol on the right. Then the given
stnng is not a palindrome. The corresponding S-productions for this can be

1 S—aSa|bSb|A

where;A generates string of only non palindromes. To get a string of non-palmdromc _
the string derivable from A should have different symbols in the beginning and in the
end, the length of which should be greater than or equal to 2 and 50 the A-productions
can take the following form

f A — aBb | bBa

From | productlon B, if we can generate any string of a’s and b’s mcludmg € ie.,
(a+b)’, the string derivable from A is still a non-palindrome. So, the B- productlons
can be written as : :

B —aB|bB|e

So, the complete grammar to generate strings of non-palindromes is given by G = (V,
T, P, S) where ,

(S.AB}

V =
T = {a,b}
P o= ,
S — aSa|bSb [Generates palindromes both on
. ' left side and right side]
S - A [ Generates a non-palindrome]
A — aBb|bBa _[Generates a non palindrome
with B generating any number of
a’sand b’s]
; B — aB|bB|¢ [ Generates any combination of a’s
| ' and b’s]
i } :
S is the start symbol
The derlvatlon for the string ababba which is not a palindrome is shown below.
: S = aSa
= abSba
= abAba
= abaBba
= ababba

Example 1.7: Obtain the grammar to generate the language
={0" lm2“|m>1andn>0}
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Solution: In the language L = {0™1™2"}, if n = 0, the language L contains m number of
0’s and m number of 1’s. The grammar for this can be of the form
A — 01| 0Al .

If n is greater than zero, the language L should contain m number of 0’s followed by m
number of 1’s followed by one or more 2’s i.e., the language generated from the non-
terminal A should be followed by n number of 2’s. So, the resulting productions can be
written as \

S —>A|S2
A — 01 |0A1l : o 3

Thus, the grammar G to generate the language
L={0"1"2"|m>1andn20}

can be writtenas G = (V, T, P, ‘S) where

V = {S,A}
T = {0,1,2}
P = { .
S — A|S2
A — 01|0Al
} ,
S is the start symbol

Note: Let us concentrate on another technique. Observe that the language :
L={0"1"2"|m>1andn>0} o

¢an be split up into two languages L, and L, where L, is made up of m number of 0’s
followed by m number of 1’s for m > 1. The language L, is made up of n number of 2’s
forn > 0. The given language can be obtained by concatenating L and L,. The language
L, consisting of m number of 0’s followed by m number of 1’s for m > 1 can be obtained
using the productions:

A —01]|0Al

The language L, consisting of zero or more 2’s can be obtained using the productlons
B—2B|¢

Now, the given language L can be obtamed by concatenating the languages generateid
from the above productions. This is achieved using the production: 2
S — AB. ' i
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Thils,« the grammar G to generate the language
L={0"1™2"|m>1andn20}

is given by

G=(V,T,P,S) where

{S, A, B}
{0, 1,2}

\%
T
P {

S — AB
A — O01]0Al
B — 2B|e
: }
S is the start symbol .

Example 1.8: Obtain a grammar to generate the language
? ~ L={0"1""|n2>0}

Not?t It is clear from the language that total number of 1’s will be one more than the total
number of 0’s and-all 0’s precede all 1’s. So, first let us generate the string 0"1° and add
the digit 1 at the end of this string.

Thei tecursive definition to generate the string 0"1" can be written as
7 "A—0Al|e ‘

If tﬁé producfion A — O0ALl is applied n times we get the sentential form as shown .
below. '
’ A=0Al=00All=> ... 0"Al"

Finitlly if we apply the production
3 A—E¢

the =jkierivation starting from the start symbol A will be of the form

: A =>0Al = 00All = ...... 0"Al" = 0"1"
Thljhs, using these productions we get the string 0°1". An extra 1 can be obtained by
appending 1 at the end of A. This can be achieved by using the production

: S — Al '



20 & Finite Automata and Formal Languages

Note that from A, we get string 0"1" and 1 is appended at the end, resulting in the string
0"1™". So, the final grammar G to generate the language L = {0"1™'| n > 0} will be G =
(V, T, P, S) where

V = {S,A}
T = {01}
P =
S — Al
A — O0Alfe
}
S is the start symbol

Note: The language L = {0"1™*'| n > 0} can also be obtained using the grammar with
only two productions as shown below:
| S — 0S1]L

Example 1.9: Obtain the grammar to generate the languége ‘ |
L = {w | ny(w) = ny(w)}

Note: n,(W) = ny(W) means, number of a’s in the string w should be equal to number of
b’s in the string w. To get equal number of a’s and b’s, we know that there are three
cases: : :
' 1. An empty string denoted by € has equal number of a’s and b’s (i.e., zero a’s
and zero b’s). :
2. The symbol ‘a’ can be followed by the symbol ‘b’
3. The symbol ‘b’ can be followed by the symbol ‘a’

The corresponding productions for these three cases can be written as
S—e¢ '
S — aSb
S — bSa

Using these productions the strings of the form €, ab, ba, abab, baba etc., can be’
generated. But, the strings such as abba, baab, etc., where the string starts and ends with

the same symbol, can not be generated from these productions (even though they are

valid strings). So, to obtain the productions to generate such strings, let us divide the

string into two substrings. For example, let us take the string. ‘abba’. This string can! be

split into two substrings ‘ab’ and ‘ba’. The substring ‘ab’ can be generated from S and the

derivation is shown below: ,

S = aSb (By applying S — aSb)
= ab ~ (By applying S — ¢)
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N
i
‘

Slmﬂarly, the substring ‘ba can be generated from S and the derivation is shown
below
S = bSa (By applying S — bSa)
= ba (By applying S — €)

i.e., the first sub string ‘ab’ can be generated from S as shown in the first denvatlon and
the second sub string ‘ba’ can also be generated from S as shown in second derivation.
So, To get the string ‘abba’ from S, perform the derivation in reverse order as shown
below: ’

abba

ab/\ba

| l
S S
\/

So, to get a string such that it starts and ends with the-same symbol the productlon to be
used is
S —SS

The! ﬁnal grammar to generate the language L= {w|n,(w)= nb(w)} isG= (V T, P,
S) Where

V = (S}
T = {a,b}
P = {
S — ¢
S — aSb
S — bSa
S — SS
}
S is the start symbol
ExaInple 1.10: What is the language generated by the grammar
S—0A|e
A— 1S

Solation: The null string € can be obtained by applying the production S— € and the
derwatlon is shown below:
S=¢ - (ByapplyingS—»e)
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Consider the derivation
S=0A (By applying S — 0A) ~
=018 (By applying A — 1S)
= 010A  (By applying S — 0A) :
= 0101S  (By applying A — 1S)
= 0101 (By applying S — ¢)

So, altematlvely applying the productions S — 0A and A — 1S and finally applyrqg the
production S — &, we get string consisting of only of 01’s. So, both null string i.e., £ and
string consisting of 01’s can be generated from this grammar. So, the language generated
by this grammar is

L= {w']we {01}* } or L={ (01) |n>0}

Note: The above language can also be generated from the followrng two grammars
S—01S|¢
and
' S—S01|¢

Example 1.11: Obtain a CFG to generate a string of balanced parentheses.

Solution: The grammar G to generate a string of balanced parentheses is given by G=
(V, T, P, S) where

(s} o
{OLLG)) | |
{ .

S —(S)
S —[S]
S — {S}
S—SS
S—¢
}
S is the start symbol

o<
Sy

Example 1.12:
Example 1.13: Obtain a grammar to generate the language -
L= {ww"|we {ab}"} where WX is reverse of w.

Solution: The grammar to generate the language L = {ww" | w € {a,b}"} where w} ;s
reverse of w is given by :
G=(V,T,P,S) where . 1
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; V={S)
T = {a, b}
P={
S —aSa|bSb|e

}
S is the start symbol.

Note: In the above grammar if the production
S— ¢
is replaced by
S—c

the reéulting grammar will generate the language of the form L = {wew® |w e {ab}’}

Example 1.14: Obtain a 2grammar to generate the language
: L={0"1"|n>0}

Solution: The grammar G to generate the language L = {0“12“ [n>0}is G=(V,T,P,S)

where .

1 V = {S}
T=1{0,1}
s P= | |
S —0Sll |e
}
S is the start symbol

Example 1.15: Obtain a grammar to generate the language
| L={0"1"|n>1} |

Solut"on: It is similar to the previous problem, with little bit of modifications. The
grammar G to generate the language L = {0™*1"|n>1}is G=(V, T, P, S) where

V={S, A}
T={0,1}
P={
S — 00A
A — 0Al |01
}

Exainbie 1.16: Obtain a grammar to generate the language
i L={0'|i#j,i=0andj20}

Note: It is clear from the statement that if a string has n number of 0’s as the prefix, this
prefixed string should not be followed by n number of 1’s i.e., we should not have equal
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number of 0’s and I’s. At the same time 0’s should precede 1’s. The grammar for this
can be written as -
G=(V,T,P,S) where

V = {S,A,B,C}
T = {0.1}
P = |
S — BA| [At least one O is preceded by 0"1"]
S — AC - [Atleastone 1 is followed by 0"1"]
A — 0OAl|e [Generates 0"1"|n>0]
B — 0B|O [At least one 0 is generated]
C — 1C|! -[At least one 1 is generated]
| : '
S s the start symbol

Note: The following grammar also generates the language L = {0'’ | i #j,i > 0 and jz
0} |

V = {S,A,B,C}
T = {0,1)}
P = {
S — 081 [Generates 0"1" recursively]
S - A [To generate more 0’s than 1’s]
S — B [To generate more 1’s than 0’s]
A — 0A|O [At least one 0 is generated)
B — 1B|1 - ' [Atleastone | is generated]
S is the start symbol (

Example 1.17: Obtain a grammar to generate the language
L= {a"*™|n>0and m>n}

Solution:

Note: It is clear from the above statement that the set of strings that can be generated by
this language can be represented as

—{aabb* aaabbb*, aaaabbbb* .

Observe that the language consists of a string a"b" | n > 1 preceded by one a and followcd
by zero or more b’s. This prompts us to have a production of the form !

S ——»aAB, » o
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wher E.t,he language a"™b" | n > 1is generated from the variable A and zero or more b’s are
generated from the variable B. The language a’b” | n 2 1 is generated from the variable A
using the productions shown below

A — aAb|ab

and z¢ro or more b’s are generated from the production
B — bB|e

So, the final grammar G = (V, T, P, S) which can generate the given language is

'V = {S,A,B}
T = {ab}
P = | , _ _
‘ S — aAB [‘a’ followed by a string having n number of a’s
: followed by n number of b’s followed by zero
or more b’s]
A — aAb|ab ~  [generatesa'"]
B — bB|e [Generates zero or more b’s] -
3 }
'S - s the start symbol

Note:§f The above language can also be generated from the grammar shown below:

V = {S,A B}

T = {ab}

P = |
S — AB [Generates a™'b" followed by by zero

or more b’s] '
A — aAbja [ generates a™'b" ]
B — bB|e [Generates zero or more b’s]
i } : :
"S- isthe start symbol

!
Example 1.18: Obtain a grammar to generate the language
‘ L={a"b"|n>0, m>n}

Note: It is similar to the previous problem with some changes. It is clear from the above
statement that the set of strings that can be generated by this language can be represented
as

L = {ebb*, abbb*, aabbbb*, ............ I3
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where b* represents zero or more b’s. Observe that the language consists of a string a"b" |

n 2 0 followed by one or more b’s. This prompts us to have a production of the form
S — AB . . .

where the language a™" | n > 0 is generated from the variable A and one or more b’s are generated from the -
variable B. The language a"b" | n 2 0 is generated from the variable A using the
productions shown below ’ ' ' '+

A — aAb|e
and one or more b’s are generated from the production
B — bB|b
So, the final grammar G = (V, T, P, S) which can generate the given language is
V = {S,A B}
T = ({ab}
P o= | | |
S — AB .
A — aAb|e [ Generates a"b" | n 2 0]
B — bB|b [Generates one or more b’s]
} .
-S - s the start symbol

Note: The same language can also be generated from the following grammar:

S — aSb|B [ Generates a"b" | n > 0 followed by at least one

b]
B — bB|b [Generates one or more b’s]

Example 1.19: Obtain a grammar to generate the language
L={a""%n>3)

Note: It is clear from the above statement that the set of strings that can be generalied by
this language can be represented as _
L = {aaa, aaaab, aaaaabb aaaaaabbb, ......... }

It is observed from the above set that the strmg ‘aaa’ is followed by the strmg a"b" ﬁn 20.
So, the first production that we can think of is '

S — aaaA .
where the string a"b" | n 2 0 can be obtained using A as shown below: 1
A — aAb|e |

So, the final grammar that can generate the given language is
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V = {S,A} -
T = {ab}
P = {

S — aaaA

A — aAb|e

}

S - s the start symbol

Note: The same language can also be generated from the grammar with the following
prod(xctions:
i S — aSb|aaa

Example 1.20: Obtain a grammar to generate the language -
L=LL;
whete
f ={a"»"|n2>0,m>n}
L,={0"1*"|n>0}

Sol{ltion:- The grammar corresponding to the language L, is already obtained in example
1.43. For convenience it is provided again

\ = {SlaB}
: T = {ab}
. P =
; S, — aS;b|bB
B — bBie
}
Si - is the start symbol

Thq grammar corresponding to the language L is already obtamed in example 1.38. For
con?vemcnce it is provided again
V={S;}

T=1{0, 1}

P={

|

S, — 08,11 | €

}
S, is the start symbol

Thé resulting language

L=L|L;
can be generated from the grammar obtained by concatenating the start symbol S; of first
grammar with the start symbol S; of the second grammar as
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S iand S|Sz

where S is the start symbol of the resultant grammar. So, the final grammar which
accepts : ' :

L=L|L2
is shown below:
V. = {85,S:8S, B}
T = {ab0,1}
P = { ‘
S — Slsz
S] b d aS.bIbB
S; — 0S¢
B — bB|e
}
S; - is the start symbol

- Example 1.21: Obtain a grammar to generate the language
L=L, UL,

where :
Ly ={a""|n2>0,m>n}
L, ={0"1*"|n>0}

Note: This problem is similar to the previous problem; except that from the start synibol
S either S, is derived or S; is derived as shown below.

S —+81|SZ

The rest of the productions remain same. The final grammar is shown below(Both the
grammars below generate the same language) ‘

V = (S,5,8,AB} V = {S,S,5,B}
T = {a,b,O,l} T = {a,b,O,l}
— P = | , P = |

S = 58, ‘ S =SS
Sl — AB S] g aSlble
S; — 0S11]¢ : S; — 0S,11]e
A — aAb| e - B — bBle |
B — bB|b }

} Si - s the start symbol
Sy - is the start symbol ,
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Examj:le 1.22: Obtain a grammar to generate the language L = {w : [w| mod 3 =0} on
Solu(ion: The language accepted by the grammar can also be written as

. L = {¢, aaa, aaaaaa, aaaaaaaaa, 4aaaaaaaaaaa, ........... }-

It is clear from this definition that any string generated should have the length multiples
of 3 which can be easily done by the production

S — aaaS|e

So, the final grammar is

vV = {S}

T = {a}

P = {

S - is the start symbol

Exaniple 1.23: Obtain a grammar to gcnerz;te the language
L={w:|w/mod3=0}onZ={ab}
Soluﬁ'on: ‘

Note: It is similar to the previous problem, except that the string is made up of a’s
and b’s. '

So, a string of length with multiples of 3 can be generated using the production
S — AAAS|e

wheﬁb the non-terminal (or variable) A can be replaced by either a or b as shown below
using the production '

A - alb

So, the final grammar is
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V. = {S,A}
- T = {ab}
P = { Tt .
S — AAAS|e Accepts w of |w| =3i,i >0
A — a|b -
|
S - is the start symbol

Example 1.24: Obtain a grammar to generafe the language
L={w:|w|mod3>0}onZX={a}

Solution: The language generated from this can also be represented as
L = {a, aa, aaaa, aaaaa, aaaaaaa, aaaaaaaa, ......... }
Note that in the above set of strings, a string of length having multiples of 3 is not there.

Stepl: To generate the above language, let us generate a single a followed by non-
terminal A as shown : ‘

S —aA

Step 2: From A, we can generate € thus producing single a using the production
A - € »

in turn producing a string with |w| =1

Step 3: To generate a string w with |w| = 2, from A, we ha\}e to produce one more a
followed by a non-terminal B as shown below: '

A — aB
Step 4: From B, we can generate € thus producing two a’s usihg the production
B — ¢

in turn producing a string with |w| =2
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Step 5 To generate a string w with |w| = 3, from B, we have to produce one more a
followed by a non-terminal C as shown below:

A — aC

Since|we should not accept a string of |w| = 3, we should not derive € from C. So, if .
we st(pp at step 2 or step 4 we get a string of |w| = 1 or 2. If we are in step 5, we have
three a s followed by C from which we should be in a position get strings of |w| 4 or
5. Now, to get a string of |w| = 4 or 5, we have to get one more a or two more a’s
which we have already obtained using step 2 and step 4.

It meéns that after accepting three a’s in step 5, to get one more a or two a’s, we can
replace C by S and repeat the steps again. So, instead of using the production

A — aC
we cofuld have used the production |
A — aS

to get%a string of |w| mod 3 > 0. So, the final grammar is

'V = {S,A B}
T = {a}
P = ,
S — aA
A — aB|e (Acceptswof |w|=14,7,...)
B — aS|e (Accepts wof|w]=2,538,...)
1 }
'S - isthe start symbol

Noté:? The same language can also be obtained using the foylloWing grammar:

vV = {S}
T = {a}
P = {
S — alaalaaa$
} .
S - is the start symbol

EXambIe 1.25: Obtain a grammar to generate the language
L ={w:|w| mod3 #|w| mod2}on X = {a}
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Solution: The above language can also bé represented as
L = {aa, aaa, aaaa, aaaaa, aaaaaaaa, aaaaaaaaa, aaaaaaaaaa,......... }
' ' or
L={(w:we a*and|w|=2ior3iordiorSifori=1,4,7,10,13,..}

This problem is similar to-the previous problem. The reader is supposed to tﬁink and
understand how these productions are evolved step by step. The complete grammar is
shown below. . : 5

{

V = {S,AB,C,Dj
T = {a}
P = {
S — aaA
A — aB|e (Acceptswof|w|=28,....)
B — aCle (Acceptswof|w|=3,9,....)
C — aD|e (Accepts wof jw| =4,10,...)
D — aS|e - (Accepts wof |w|=5,11,..)
}
S - is the start symbol

Note: The following grammar also accepts the same language

vV = {S}
T = {a}
P = {
S  — aa|aaa|aaaa|aaaaa|aaaaaaS
}
S - is the start symbol

Example 1.26: Obtain a grammar to generate the language :
L={w:|w|/mod32|w|mod2}onZ-={a} : ?

Solution: The above language can also be represented as
L = {¢, a, aa, aaaa, aaaaa, aaaaaa, aaaaaaa, 42aaaaaa, aaaaaaaaaa,...}
or ,
L ={(w:w e a*and |w| =i fori=0,1,2,4,5,6,7,8,10,11,12,13,14,16,....}

This problem is similar to the previous problem. The reader is supposed to thin;k and
understand how these productions are evolved step by step. The complete grammar is
shown below. . ' %
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V = {S,AB,CD}
T = {a}
P =
Lo S —.aAle (Acceptwof |wj=0,6,12,......)
5 A  — aB|e (Acceptwof|w=1,7,13,......)
| B — aaCle (Acceptw of [w|=2.8,14,......)
C — aD|e (Accept w of |w|=4,10, 16,....)
D — aS|e (Acceptw of |w|]=5,11,17......)
S - is the start symbol

Note: The above grammar can also be written as

vV = {S}
T = {a)
o P = { - ,
.S — g|a]aa]|aaaa|aaaaa|aaaaaaS
| S ' ’.
S - is the start symbol

Exa mple 1.27: Obtain agrammar to generate set of all strings with exactly one a when X
= {a, b}

Smce w € L should have exactly one a, this single a can be preceded by any number of
b’s winch can be achieved using the production
S — bS|aB

Note ithat each time bS is substituted in place of S, one extra b is generated. Finally, if S |
is replaced by aB, we will have exactly one a followed by a non-terminal B. From this B,
we shiould generate any number of b’s and can be achieved using the production

B —bBje
So, the final grammar to generate at least one a is
V = {S,B}
T = {ab}
P =
S — bS|aB
B — bBle

}

S - is the start symbol
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Example 1.28: Obtain a grammar to generate set of all strmgs with at least one a when £
= {a, b}

Solution: String consisting of at least one a implies one or more. a’s. These one or more
a’s can be preceded by any number of b’s which can be achieved using the production

S — bS

Note that each time bS is substituted in place of S, one extra b is generated. Once there
are no b’s, we should be in a position to generate at least one a from S and can be
generated by the production

S — aA

Once one a is generated, this a can be followed by any number of a’s and/or b’s. The
productions to generate such a’s and b’s are

A — aA|bA|e

So, the final grammar to generate at least one a is

V = {§SA}
T = {a,b}
Po={
S — bS|aA
A  — aA|bAje
}
S - is the start symbol

Example 1.29: Obtain a grammar to generate the set of all strings with no more than three
a swhenE— {a, b}

Soluion: String containing note more than three a’s implies that
there can be no a’s at all

there can be only one a

there can be only two a’s

there can be only three a’s

o e

But, at any point of time number of a’s should not exceed 3 and the string can have any
numbser of b’s. Let us take all these four cases one by one.
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Case 1: there can be no a’s at all, but there is no restriction on the number of b’s. The
productlon corresponding to this is

S — bSle

Case 2: There can be only one a. The single a can be obtained by the start symbol S

usmg the production -
S —aA

Aftet applying this production, we get one a followed by a non-terminal A. From this we
can generate any number of b’s using the production

A — bA|e

and the string can be accepted. After the input of some b’s, we can input one more a
which is the next case.

Case 3: There can be two a’s. When we get the non-termmal A, we would have got one a.
To get one more a, we can have the production

A — aB
After applying this production, we would have got some number of b’s and exactly two
a’s where the second a is followed by a non-terminal B. Any number of b’s can be
generated from B and the corresponding productions are:

B — bBle

After applying this production some number of times, we have two a’s followed by zero
or more b’s. After some b’s, we can input the third a which also should be accepted and
the corresponding production is ~

B — aC

After applying this production, we have accepted three a’s wh1ch can be followed by any
number of b’s. The correspondmg productxons are :

C —-bCle

Now we have accepted maximum of three a’s and no more a’s can be accepted thus
producing not more than three a’s. So, the final grammar is
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V = {S§,ABC)

T = {ab}

P = {
S — bS|aA|e
A  — bA|aB|e
B — bB|aC|e
C - bCle

}
S - is the start symbol

Note: For the language another grammar can be generated as shown below: String
containing note more than three a’s implies that

1. there can be no a’s at all. The corresponding production canbeS — B

2. there can be only one a. The corresponding production is S — BaB

3. there can be only two a’s. The corresponding production is S — BaBaB

4. there can be only three a’s. The corresponding production is S — BaBaBaB

Now, the string containing any number of b’s can be generated from the production
B — bB | &. So, the final grammar to generate the given language is glven byG=(V,T,
P, S) where

V. = {S,B}
T = {a b}
P = {
S — B|BaB |BaBaB | BaBaBaB
B — bBje
}
S - is the start symbol

Example 1.30: Obtain a grammar to generate fhc language L = {w | no(w) = np(w) + 1}

Solution: The problem is similar to example 1.9, except that w € L should have one
more a either in the beginning or at the end or at the middle. This can be achieved using
the production :

S — AaA
where A generates equal number of a’s and &’s using the productions

— aAb
— bAa
— AA

— €

> > > >
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|
Sp, the final grammar to generate the language
’ L = {w | na(w) =ny(w) + 1}

|
|

i§G = (V, T, P, S) where

V = {S,A}
T = {a,b}
P = |
' S — AaA |
A — aAb|bAa|AAle
; }
] S is the start symbol

Exanilple 1.31: Obtain the grammar to generate the language
B L = {w | ny(w) > np(w)}

Solution: The ‘problem is similar to example 1.9, except that w € L should have more
number of a’s than b’s. We have already seen that the following grammar produces equal
number of a’s and b’s:

aAb
bAa
AA
€

> > > >

LI

Since number of a’s should be greater than number of b’s, w should be in a position to
generate 1 or more a’s. One or more a’s can be generated using the production:

B—aB|a

Singe more number of a’s can occur in the beginning, at the end or at the middle, we
should have a production to generate as many a’s as possible in the respective places.
Equal number of a’s and b’s can be followed by one or more a’s which can be achieved
by introducing the production :

S — AB

quial number of a’s and b’s can be preceded by one or more a’s which can be achieved
by introducing the production
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S — BA

Equal number of a’s and b’s can have one or more a’s in the middle which can be
achieved by introducing the production

S — ABA
So, the final grammar to generate the language
L ={w|ny(w) > ny(w) }

isG=(V,T,P,S) where

V = {S,A B}
T = {a,b}
P = |
S — AB|BAJABA
A — aAb :
A — bAa
A — AA
A - ¢
B — aB]|a
}
S is the start symbol

Example 1.32: Obtain the grammar to generate the language L = {w | na(w) = 2np(w)},

The explanation is similar to the problem 1.9, except that for every two a’s we are
supposed to produce one b. So, the final grammar to generate the language

| L = {w | ni(w) = 2ny(w)}
isG=(V,T,P,S) where

vV = (S}

T = ({a,b}

P = {
S — ¢
S — aaSb
S — bSaa
S — S§§S

}

S is the start symbol
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Example 1.33: Obtain a grammar to generate a language of strings of 0’s and 1’s having a
substring 000 ' N
’ ie,L= {w | w € {0,1}* with at least one occurrence of ‘000’ }

Solution It is clear from thlS definition that the substring 000 can be preceded and
folloWed by strings of 0’s and 1 s of any length which can be generated using the
produptlon of the form

S — AO000A

where any strings of 0’s and 1’s are generated from the non-terminal A using the
productions

A — 0A|l1A] ¢

So, tﬁe final grammar to generaté the given language isG=(V, T, P; S) where

vV = {S}
; T = {01}
- Po=
f S — AO00OA
A — 0A|lA|e
}
S is the start symbol

Example 1.34: Obtain a grammar to generate the following language
i.e.,L={a"b"c |n+2m k forn>0, m >0}

Solutlon It is required to generate the grammar for the language
1; L= {a"b™c*|n+2m =k forn>0, m>0}
Let us express k in terms of n and m in"a"b" c*. So, after substituting for k using k =n +

2m we have:
L= {a"b™c™*™ |n >0, m >0}

which is equivalcnt to
= {a"b™c*™c" |n >0, m > 0}

So, it is clear from these examples that the given language can be expressed as: »
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L={w]| a"b™c?™c" where m >0, n > 0}

The sub string b™c*™ can be generated from the following productions:

A — bAcc| e

The substring thus generated from A-production is enclosed between a" and c" and the
corresponding productions can be written as
S — aSc|A

So, the final grammar to gencraté the given language is G = (V, T, P, S) where

V = (S}
T = {abyc}
P = { :
S — aSc|A
A — bAcc|e
}
S is the start symbol

110  Applications

There are numerous applications of the grammars and formal languages in the field of
computer science. Let us concentrate on only few applications such as

—® Programming Languages

— Finite automaton

Applications

3 Digital Design

1.11  Programming Languages

The grammar and formal languages are very suitable to express any programming
language. Building a programming language like Pascal, C, C++ etc., is very expensive
and time consuming and is not the scope of the book. Just to understand that grammars
are very useful in designing a programming language, let us take an example of how to
find the identifiers of a particular language.

Example 1.35: Obtain the grammar to identify an identifier.



Notations and definitions = 41

Note: An identifier can a variable name or a function name etc. If we define an
identifier such that it should start-with a letter and that letter can be followed by any
combinations of letters or digits, the grammar to generate an identifier is

. <identifier> — <letter><letter_digit>

<letter_digit> — <letter><letter_digit>|<di git><letter_digit>|e
- <letter> — ap)|....z|A|B|....|Z
- <digit> —0|1]2]....]9

wheré <identifier>, <letter_digit>, <letter>, <digit> are the variables or non-
termihals and the symbols such as a,b.z,AB,...Z,01,2,..9are terminals.

1.12 Finite Automata

An automaton can be represented using a directed. graph with vertices representing the
states and the edges representing the transitions. The labels of the graph represent the
input to be given from one state to another state. The detailed discussion of how to
consiruct a finite automaton is given in Chapter 2. The figure 1.3 shows a finite
automaton to accept only a valid identifier. o :

letter / digit

letter

letter / digit

Fig. 1.3 FA to accept an identifier

The ' machine initially will be in the start state 0. If the input is a letter it is a valid
identifier and enters into state 1. In this state if the input contains a string of any
combinations of letters or digits, the string will be accepted by the machine and the
machine stays in state 1 accepting all digits and letters. The two concentric circles in the
finite automaton indicate the final state or an accepting state. In state 0, if the first input is
a digit, the symbol is invalid and enters into the state 2 which is the rejecting state. Once’
the machine enters into the rejecting state, the input string should be rejected and so the
" machine stays in state 2 only. ‘ . '
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1.13  Digital Design

An automaton will be very useful in digital design because many of the circuits are based
on concepts from automata theory. Even though logical implementation of a circuit is
through transistors, resistors, gates, flip-flops etc., an automaton serves a bridge between
its implementation and functional description of a circuit. The implementation of a
binary adder which is an integral part of any general purpose computer is discussed in
this section. Let the two binary numbers to be added are:

X0XX2.....Xn and y1y2y3....Ya

where each x; or y; is a binary digit 0 or 1. When these two digits are added with or
without the carry, the result of addition may be 0 or 1 with or without carry. The block
diagram of binary adder is shown in figure 1.4.a. The possible inputs and the possible
outputs and whether the carry is generated or not is shown in figure 1.4.b. °

input output
) L’\ s H
Xi — P —» d Xl Yy d; | camry
Yi —® Binary adder 0f0]o0 0
—> 0 1 | 0
. 1 0 1 0
1 » 1.{0 1
carry (0/1)
Fig. 1.4 (a) Binary adder Fig. 1.4.b Truth table

Note that the output d; of the binary adder can be 0 or 1 with or without carry. To start
with there is no carry while adding x; with yi and so the state “no carry” is the start state
which is designated with a strai ght arrow as shown below. '

After adding Xi with y; the result obtained is d; and the state can either be “carry” org“no
carry”. This can be indicated generally as an edge with the label:
' (xi, yi) / di

Let us take situations with and without carry and construct the binary adder.
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Witl;i no carry: If x; is 0 and y; is O then d; is 0 and carry will not be generated. This can
be represented as (0,0)/0 and the machine stays in “no carry” state as shown below:

(0,0)/0

If x; i,s 0 and y; is 1 then d; is land carry will not be generated. This can be represented as

(O,l)] 1 and the machine stays in “no carry” state and the automaton can be modified as
shown below:

0.,1)/1

If x; is 1 and y; is O then d; is 1and carry will not be generated. This can be represented as
(1,0)( 1 and the machine stays in “no carry” state and the automaton can be modified as
shown below:

~o,nn
(0,00

(1,0)/1

! . .
If x; is 1 and y; is 1 then d; is 0 and carry is generated. This can be represented as (1,1)/0
and the machine goes to “carry” state as shown below:

©,1)/1

(L0¥1

(1,10

Witﬁ carry: If x; is 0 and y; is O then d; is 1 and the carry is not generated. This can be
represented as (0,0)/1 and the machine goes to “no carry” state as shown below:
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0,11

(1,0)/1 (1.H)/0

(0.0¥/1

If x;is 0 and y; is 1 then d; is 0 and a carry is generated. This can be represented as (0 1)/0
and the machine stays in “carry” state as shown below:

(0,1)/1 .
(1,0)/1 (1.1)O O.h/0

(0,0¥1

If xj is 1 and y; is O then d is 0 and a carry is generated. This can be represented as (1 0)/0
and the machine stays in “carry” state as shown below:
(0,1)/1 ’ (1,0)/0

aon  ano OO

If x;is 1 and y; is 1 then d is 1 and a carry is generated. This can be represented as (1 /1
and the machine stays in “carry” state as shown below:

0,1)/1 . (1,0/0
(1,0/1 (1.1)0 (0,1)/0 (1,1y1

(0.0)/1

Fig. 1.5 Automaton for serial binary adder -

The figure 1.5 shows the complete serial binary adder using the automaton. Note
that the transition consists of input as well as the output. Such machines: where the
outputs are associated with transitions are called Mealy Machines and if the output is
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assoéiated with the state, the machines are called Moore Machines. The study of these
machines is not the scope of this book and the reader is supposed to refer on these topics.

Exercises:

L.

B I S

wNot

9.
10.

11.

12.
13.

- 14.

15.

Define the following terms with examples
Alphabet
String
Concatenation of two strings
star-closure :
Positive-closure
Language
Reverse of a string
Length of a string
What is a grammar? Explain with example
What is derivation? Explain with example
Define the following terms with examples

a. grammar )

b. sentence of a grammar

c. sentential form
Obtain the grammar to generate integer
Let Y. = {a, b}. Obtain a grammar G generating set of all palindromes over X..
Obtain a grammar to generate a language of all non-palindromes over {a,b}
Obtain the grammar to generate the language
L={0"1™"|m>1landn>0}
Obtain a grammar to generate the language L = {0°1™*'|n >0}
Obtain the grammar to generate the languages ‘

a. L= {w]|nyw)=ny(w)}

b. L= {w|ny(w)=np(w)+1}

c. L={w|ny(w)>ny(w)}

d. L= {w|ny(w)=2np(w)}
What is the language generated by the grammar

S—0A|e
A—1S8

SEmomoe a0 op

Obtain a CFG to generate a string of balanced parentheses

Obtain a grammar to generate the language

L= {ww®|we {ab}"} where w" is reverse of w

Obtain a grammar to generate the language L = {0"1" | n >0}
Obtain a grammar to generate the language L = {0™*1" |n>1}
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16

17.
18.

19.
20.

21.

22.
23.
24.
25.
26.
27.
28.

29.

30
31
32

. Obtain a grammar to generate the language L = {0 |i#j,i>0andj>0}
Obtain a grammar to generate the language

L={a"’b™|n>0andm>n}

Obtain a grammar to generate the language

L={a"b"|n>0, m>n}

Obtain a grammar to generate the language L = {a"b™> |n>3}
Obtain a grammar to generate the language L = L,L;
where

L,={a"b"|n>0, m>n}

L,={0"1""|n>0}
Obtain a grammar to generate the language L = L;UL,
where ,

L;={a""|n>0, m>n}

L;={0"1"|n>0}
Obtain a grammar to generate the language L = {w : [w| mod 3=0}on X = {a}
Obtain a grammar to generate the language L = {w : |w| mod 3 =0}on X = {a, b}
Obtain a grammar to generate the language L = {w : |w| mod 3 > 0} on Z = {a}
Obtain a grammar to generate the language L = {w : |w| mod 3 # |w| mod 2}on =
= {a} |
Obtain a grammar to generate the language L = {w : |w| mod 3 > |w| mod 2} on =
= {a} |
Obtain a grammar to generate the set of all strings with exactly one @ when X = {a,
b} : ' .
Obtain a grammar to generate the set of all strings with at least one @ when X = {a,
b} ’
Obtain a grammar to generate the set of all strings with no more than three a’s
when X = {a, b} '
. Name some of the applications of formal languages and grammar
. Obtain a grammar to grammar to identify an identifier
- How an automaton can be used to add two binary numbers?
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Finite Automata

What we will know after reading this chapter?

Deterministic finite automaton (DFA)

Languages accepted by DFA

Transition diagram

Representation of DFA using Transition diagram »
Solution to various types of problems while constructing DFA.
Regular language

Applications of Finite Automata
Non-Deterministic Finite Automaton (NFA)
Languages accepted by NFA

Need for an NFA

Differences between DFA and NFA

Conversion from NFA to DFA

Solutions for varieties of problems while converting from NFA to DFA

Solution to more than 25 problems of various nature

Finally, we will be having confidence to solve any given problem .
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The finite automata theory is the study of abstract machines or computing devices. The
automata theory even though was originally proposed to model brain function, it was
extremely useful for a variety of other purposes. Automata are a useful model in both
hardware and software. Now, let us see “What are applications of finite automata?”’
Some of the applications where automata plays an important are:

* In the design of digital circuits and checking the. behavior of the digital circuits
using software.

* In compiler design: During compilation, the lexical analyzer (which is a
component of a compiler) breaks the input text into various logical units such as
identifiers, keywords and puncfuation.

* In designing a software for identifying the words, phrases and other patterns in
large bodies of text (such as collection of web pages)

* In building the software to ‘verify the systems having finite number of states (for
example, communication protocols)

Note: In our life, we still remember some past events and some which are not important
we forgot. Those events might have played very important role and based on those events
our course of actions changes and hence the outcome of that action changes. On similar
lines, in finite automaton some points might change the output of the system and some
points will not affect the output. These points which affect the output of the system are
called states. Each finite automaton has some states using which it can remember useful
information. "

Now, let us see “What is finite automaton?”

Definition: A finite automaton is a mathematical model for study of abstract machines or
abstract computing devices with discrete inputs and discrete outputs. In short, it is an
abstract model of a digital computer which with following components:

Input file

LI T T ]

T_\

Control Output
Unit )

Input file: Input file is divided into cells. Each cell can hold one symbol. |
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Control Unit: Initially control unit will be in start state. Based on the mput symbols, the
state of the control unit may change.
Output: Output may be accept or reject. When end of input is encountered, the control
unit may be in accept or reject state. If it is in accept state, we say that the input string is
accepted by the machine. Otherwise, we say that the input string is rejected by the
machine. '

~+ For example, consider an electric switch which has only two states “OFF” and
“ON”. To start with the switch will be in OFF state. When we push the button, it goes to
ON state. If we push once again it goes to OFF state. This can be represented as shown
below:

Push

Start (off) (on)

Push

Now, let us see “What are the different types of finite automata?” The different types
of finite automata are shown below:

; Deterministic finite automata (DFA)
: Types of finite _ L .
" automata Non-deterministic finite automata (NFA)

—p Non-deterministic finite automata with €-moves (€-NFA)

2.1  Deterministic Finite Automaton (DFA)

Let us take the pictorial represeritation of DFA shown in figure 2.1 and understand the
various components of DFA.

start state
% final state

Fig 2.1 Sample DFA

It is clear from this diagram that, the DFA is represented using circles, arrows and arcs
labeled with some digits, concentric circles etc. The circles are nothing but the states of
DFA. In the DFA shown in figure 2.1, there are three states viz., qo, qi and q;. An arrow
enters into state qo and is not originating from any state and so it is quite different from
other states and is called the start state or initial state. The state q; has two concentric
circles and is also a special state called the final state or accepting state.
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In this DFA, there is only one final state. Based on the language accepted by DFA, there’
can be more than one final state also. The states other than start state and final states are
called intermediate states. Always the machine initially will be in the start state. It is
clear from the figure 2.1 that, the machine in state qo, after accepting the symbol 0, stays
in state qo and after accepting the symbol 1, the machine enters into state q;. Whenever
the machine enters from one state to another state, we say that there is a transition from
one state to another state. Here we can say that there is a transition from state qo to q, on
input symbol 1. ’

In state q,, on input symbol is 0, the machine will stay in q; and on symbol I,
there is a transition to state q.. In state q2, on input symbol O or 1, the machine stays in
state g, only. This DFA has three states qo, q; and q; and can be represented as

Q=1{q0, q1, 92}
The possible input symbols to this machine are 0 and 1 and can be represented as
2=1{0,1}

which is set of input symbols (alphabets) for the machine. There will be a transition from
one state to another based on the input alphabets. If there is a transition from V; to V; on
an input symbol a, it can be represented as

S(Vi, a) = Vj

The transitions from each state of the machine shown in figure 2.1 based on the input
alphabets {0, 1} are shown in table 2.1.

Current | Input | Next state Transition
State v representation
Qo 0 o 3(go,0) = qo
Qo 1 qi 3(qo.1) =q;
q: 0 q 8(q1,0) = q;
qi 1 9 3(q,) =q»
Q 0 Q2 8(92,0) = q»
Q2 1 q 3(q2,1) =q»

Table 2.1 sliowing the transitions for the machine shown in fig. 2.1

Consider only the transitions (last column in table 2.1) defined for the automaton:
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3 (go,0) = qo
3 (qo,1) = qi
d(@q,0)=q
K (ql»l) =q2
3(q2,0)=q>
d(qn)=q;

/L

| QX 2)twQ
where Q = {qo, q1, q2}-

: Z = {Oal }
Note that in each 8(q, a) defined above, q € Q and a € X and the ordered pair (g, a) € Q
x 2. The state qp is the initial state and the state with two concentric circles (i.e., qy) is the
final state. With this concept, now let us see “What is a deterministic finite automaton
(finite state machine)?”. A deterministic finite automaton in short DFA can be defined
as follows.

Defihition: A DFA is 5-tuple or quintuple M = (Q, 2., 8, qo, F) where
¢ Q- is non-empty, finite set of states.
e 2 -is non-empty, finite set of input alphabets.
¢ § - is transition function, which is a mapping from Q x 2 to Q. Based on the
current state and input symbol, the machine may enter into another state.
¢ qo € Q - is the start state.
¢ F c Q-is set of accepting or final states.

Note: For each input symbol a, from a given state there is exactly one transition (there
can be no transitions from a state also) and we are sure (or can determine) to which state
~ the machine enters. So, the machine is called Deterministic machine. Since it has finite
number of states the machine is called Deterministic finite machine(automaton,).

2.2 | Language accepted by a DFA

Conisider the transition diagram or DFA shown in figure 2.2. The start state is qo and the
final state is q,. To start with the machine will be in start state qo.

0 0 0,1
L 4 4
(a)—(a)

Fig 2.2 Sample DFA
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Let us assume that the string 1011 is the input. On first input symbol 1, the machine
enters into state q. In state q;, on input symbol 0, the machine stays in state q; only. In
state q;, on input symbol 1, the machine enters into state q,. In state q, on the input
symbol 1, the machine stays in state ;. Now we encounter end of the input and note that
we are in the accepting state q;. The moves made by the DFA for the string 1011 is
shown in figure 2.3.

/ | \LO l\‘_\\
3@qo, )=qi 8q.0)=q 8(qil)= 9 3(qxnl)=q,
1 (eoi)
[acceptlng state]
Fig.2.3 Acceptance of the string 1011

So, after scanning the input string 1011, the machine finally stays in state g,
which is an accepting state. Hence we say that the string 1011 is accepted by the

machine.
/ Oil 0<'\\A
3(qo, 0) =qo S(QO,I) =q \5(QI,0) =q 6(q1,.0)=q
0 (eoi)

/\/\/\/\

[non final state]

Fig.2.4 Rejection of the string 0100

Let us take the string 0100. The moves made by the machine for the string 0100 is
evident from figure 2.4. Note that after scanning the string 0100 the machine stays in
state q; which is non-final state. So, the string 0100 is rejected by the machine. Now, let
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- us see “When we say that a language is accépted by DFA?” the acceptance of the string
or rejection of the string by a machine can formally be defined as follows:

Definition: Let M = (Q, X, J, qo, F) be a DFA where

Q - is set of finite states »

2. -is set of input alphabets (from which a string can be formed)
- 8: Qx X — Q - is transition function

qgo - is the start state

F - is the final or accepting state.

The string (also called language) w accepted by an FA or DFA can be defined in formal
notation as: - '

LM)={w|we X*and S(qo,w)e F}

Non-acceptance means that after the string is processed, the DFA will not be in the final
state and so the string is rejected. The non-acceptance of the string w by an FA or DFA -
can be defined in formal notation as:

LM)={w|we Z*andc‘;'(qo,w)GSF}

In this definition, instead of using & we used the extended transition function 5. The
transition function 8 is used whenever the second argument to J is a symbol and we use

& whenever the second argument to § is a string. For example, in the figure 2.2,

8(go, 1) = qu and 8(qi, 1) =gz So, & (g0, 11) =02

2.3 Properties of Transition Functions

The different properties of the transition function are:

Properties of . 5, €) = 6@o=q o2l
transition &aq, wa) = §§ (q, w),a) 2.2
functions 8q,aw) = § (g, a), W) . 23

where g € Q,a€ X, w € 2*. Note that in the property 2.1, 8(q, €) = q. It means that
when the current state of the machine is q and when there is no input (€ means no
input or the empty string), the machine will not move to any new state, instead, it
stays in the same state q. '
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Example 2.1: For the DFA shown in figure 2.2 what is 8 (qo, 101)?
-We know from property (2.2) that

8 (qo,101) = 8(4 (qo,10), 1) 2.4)

where w = 10 and a = 1. Now, let us find out what is ) (90,10)? Again by
applying property (2. 2) ) (qo,lO) can be written as

where w = 1 and a=0. The-transitionvfunction 6 (qo, l)' can be written using the
property (2.2) as .
-0 (qo, 1)=8(9 (qo, €), 1) (26)

- Using the property (2.1) ) (qo, €) = qo.

Substituting this in (2.6) we get

3 (Qo, 1) = 8(3 (QO, e)a 1)
=08(qo, )=q1
Substituting é (o, 1) =q; in (2.5) we get

5 (90,10) = &(8 (qo, 1), 0)
= S(QI, 0) = ql ‘

Substituting ) (9o,10) = q in (2.4) we get
0 (qo,101) = 8(9 (qo,10), 1)
=3(qi, D=q:

which is the final state. So, é (qo,101) = q>.

Example 2.2: DFA which accepts any number of a’,s followed by a string ba and
followed by string of a’s and b’s.

a a,b
—)‘—a.-——*‘ O @

Fig 2.5 Finite automaton
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Here, the machine M = (Q, Y., 8, qo, F) where
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LER Y -

Q= {qo, 1, q2}
a - X={ab}
| qo is the start state
F={q.}
3 is shown using the table 2.2

z
States a b

—qo "1 9o q1

q q2 -
q: q2 |

Table 2.2 Transition table for fig. 2.5

In the transition table 2.2, the arrow mark to the state go indicates that qo is the start state
and circle enclosing state q, indicates that qa is the final state. Since this machine has
finite number of states, it is called finite automaton. After the input symbol we can
determine to which state the machine enters and so this machine is called deterministic
finite automata. The automaton such as this may have zero or one transition on an input
symbol. Before developing the DFAs for specified problems, let us see how the DFAs are
represented. The DFAs are represented usually using two different methods:

1. Pictorial representation (Transition graph / transition diagram)

2. Tabular form (Transition table)

24 Representation of DFA using Ttansitibn graph/diagram

The DFA can be expressed pictorially using circles, arrows and arcs with labels, double
circles etc. as shown in figure 2.6.

’ 0 ’ 0 ‘ ’ 0,1
1 | N~
(11—
Fig 2.6 Sample DFA (Transition graph)
This pictorial ;epresentation of FA is called the transition graph or transition

diagram. Now, let us see “What is a transition graph?” The formal definition of a
transition graph or transition diagram is shown below: ‘
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Definition: The transition diagram or transition graph for the DFA M = (Q, ¥, §, go, F) is
defined as follows: - ' ’ ‘
* Each state of Q corresponds to one node or vertex
* From each state g € Q and for each symbol a € ¥, let the transition be 3(q,a) = p.
In such case, there is a directed edge from state g to state p with the edge labeled
a. R
® Qo is the start state. The start state is a state which has an arrow entering into that
state. Note that the arrow is not originated from some other state. ‘
* F final state is represented by double circles where as a non-final state is
represented by a single circle.

Note: The transition from one state to -another state is indicated by the directed edge. If
there is a directed edge from V; to V; and the edge is labeled a, then we say that there is a
 transition (denoted by the symbol 3) from state V; to V; on the input symbol a i.e., in the
current state Vj, upon accepting an input symbol a, the machine enters into a new state
Vj. This is denoted by 8(V;,a) = V. )

25  Representation of DFA using Transition table

In this method, the DFA is represented in the tabular form. This table is called
transitional table. There is one row for each state, and one column for each input. Since,
in the transition diagram shown in figure 2.6, there are three states, there are three rows
for each state. The input symbols are only 0 and 1 and so, there are two columns for the
input symbols. The transitional table for the diagram shown in figure 2.6 is shown in
table 2.3.

i

2
States 0 1
—qo qo qi
qi i qQ:

Table 2.3 Transition table for fig. 2.6

Example 2.3: Obtain a DFA to accept strings of a’s and b’s starting with the string ab
From the problem it is clear that the string should start with ab and so, the minimum
string that can be accepted by the machine is ab. To accept the string ab, we need three
states and the machine can be written as ' ‘~
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wheré q2 is the final or accepting state. In state qo, if the input symbol is b, the machine
should reject b (note the string should start with a). So, in state g, on input b, we enter
into the rejecting state q3. The machine for this can be of the form

OmmaOma @

b

(@)

The machine will be in state qy, if the first input symbol is a. If this a is followed by
another a, the string aa should be rejected by the machine. So, in state q;, if the input
symbol is a, we reject it and enter into qs which is the rejecting state. The machine for
this can be of the form :

(3

Whenever the string is not starting with ab, the machine will be in state g3 which is the
rejecting state. So, in state qs, if the input string consists of of a’s and b’s of any length,
the entire string can be rejected and can stay in state qs only. The resulting machine can
be of the form )

The machine will be in state gy, if the input string starts with ab. After the string ab; the
string containing any combination of a’s and b’s, can be accepted and so remain in state
q2 only. The complete machine to accept the strings of a’s and b’s starting with the string
ab is'shown in figure 2.7. The state g3 is called dead state or trap state or rejecting state.

Fig.2.7 Transition diagram to accept string ab(a+b)*
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In the set notation, the language accepted by DFA can be represented as
L= {ab(atb)"|n20} -
or
L = {ab(a+b)" }
So the DFA which accepts strings of a’s and b’s starting with the strmg ab is given

by
M=(Q,2,d8,q0,F)
where-
Q =1{q0, 91,92, q3}
2 ={a,b}
qo 1s the start state
={q2}.
8 is shown the transition table 24.°
—3—
S a b
—qo (¢ TR £
T ,
8 Q@ B 9
I3
‘1’ 92 Q@
qs3 q: Qs

Table 2.4 Transition table for DFA shown in fig.2.7

To accept the string abab: The string is accepted by the machine and is evident from the

figure 2.8.

/\/\/\/\

[acceptmg state]
Fig.2.8 To accept the string abab

Here, & (go,abab) = q; which is the final state. So, the string abab is accepted by the

machine.

To reject the string aabb: The strmg is rejected by the machine and is evident from the

figure 2.9.
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VAVAVANVAN

[non-accepting state]

Fig.2.9 To reject the string aabb

Here, & (qo-aabb) = q3 which is not an accepting state. So, the string aabb is rejected by
the machine.

Example 2.4: Draw a DFA to accept string of 0’s and 1’s ending with the string 011.

The minimum string that can be accepted by the machine is O11. It requires four states
with g as the start state and g3 as the final state as shown below.

@ -@--0-@

In state qo, suppose we input the string 1111...011. Since the string ends with 011, the
entire string has to be accepted by the machine. To accept the string 011 finally, the
machine should be in state qo. So, on any number of 1’s the machine stays only in state qo
and if the string ends with 011, the machine enters into the final state. The machine can
be of the form | '

|1

If the machine is in any of the states qy, q2 and g3 and if the current input symbol is 0 and

'if the next input string is 11, the entire string should be accepted. This is because the
string ends with O11. So, from all these states on the input symbol 0, there should be a
transition to state q; so that if we enter the string 11 we can reach the final state. Now the
machine can take the form as shown below. '

==




‘
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In state g3, if the input symbol is 1, enter into state qo so that if the next input string is
011, we can enter into the final state qs. So, the final machine which accepts a string of
0’s and 1’s ending with the string 011 is shown in figure 2.10. :

Fig.2.10 Transition diagram to accept (0+1)*011
In the set notation, the language accepted by DFA can be represented as

L={ (0+1)°011[n>0}
or
L={(0+1) 011}

So, the DFA which accepts strings of 0’s and 1’s ending with the string 011 is given
by
M=(Q, X, d, qo, F) where

Q = { 9o, 91, 92, q3 }

X={01}
qo is the start state
F={qs}.
d is shown using the transition table 2.5.
«—I—>
[} 0 1
T —qo 4t 9o
g qi qi _ q2
I . g a1 Qa3
q1 Go

~ Table 2.5 Transition table for the machine shown in fig. 2.10

To accept the string 0011: This string is accepted by the machine and the sequence of
moves made by the machine is shown in figure 2.11. Here, 8’ (qo,0011) = q3 which is the
final state. So, the string 0011 is accepted by the machine.
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1 (eoi)

/\/\/\/\

[accept state]

Fig.2.11 To accept the string 0011

To reject the string 0101: The string is rejected by the machine and the sequence of
moves made by the machine are shown in figure 2.12.

1 (eoln)

/\/\/\/\

[non-acceptmg sfate]

Fig.2.12 To reject the string 0101

Here, ) (qo, 0101) = g, which is not an accepting state. So, the string 0101 is rejected by
the machine.

Example 2.5: Obtain a DFA to accept strings of a’s and b’s having a sub stringaa

The minimum string that can be accepted by the machine is aa. To accept exactly two
symbols, the DFA requires 3 states and the machine to accept the string aa can take the

form
a—(w)-->@)

where qois the start state and q; is the accepting state. In state qo, if the inpﬁt symbol is b,
stayiin go so that when any number of b’s ends with aa, the entire string is accepted. The
machine for this can be of the form

b
B @@
There is a transition to state q; on input symbol a. In state q, if the input symbol is b,
there will be a transition to state qo so that if this b is followed by aa, the machine enters

into state gz so that the entire strmg is accepted by the machine. The transition diagram
for this can be of the form
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The machine enters into state q; when the string has a sub string aa. So, in this state even
if we input any number of a’s and b’s the entire string has to be accepted. So, the machine
~ should stay in q,. The final machine which accepts strings of a’s and b’s having a sub
string aa is shown in figure 2.13.

b .
Fig.2.13 transition diagram to accept (a+b)*aa(a+b)*
In the set notation, the language accepted by DFA can be represented as

L={ (a+b)""aa(a+b.)n |m,n>0}
or .
L = {(a+b) aa(at+b)” }

The machine M = (Q, X, 9, qo, F) where
Q =1{q0. q1, q2}

2 ={a,b}
Qo s the start state
F={q2} |
d is shown using the transition table 2.6.
. 22—
) a b
T
8 —qo q o
t% qQ 92 9o
d - @ Q@

Table 2.6 The transition table

To accept the string baab: This string is accepted by the machine and the sequence of
moves made by the machine is shown in figure 2.14.

VAVAVAVAN

[accepting state]
Fig.2.14 To accept the string baab



Finite Automata = 63

Here, & (qo,baab) = q, which is the final state. So, the string baab is accepted by the
machine. The string baba is rejected by the machine and the sequence of moves made by
the machine is shown in figure 2.15.

a (eoln)

/\/\/\/\

[non-acceptmg state]

Fig.2.15 To reject the string baba

Here, (qo. baba) = q; which is not an accepting state. So, the string baba is reJected by
the machme ' .

Examp|e 2.6: Obtain a DFA to accept strings of a’s and b’s except those containing the
substring aab.

Note: This can be solved in two ways. The first method is similar to the previous problem
i.e., draw a DFA to accept strings of a’s and b’s having a substring aab. Then change the
final states to non-final states and non-final states to final states. The resulting machine
will accept the strings of a’s and b’s except those containing the sub-string aab.

Here, the second method is explained. The minimum string that can be rejected by the
machine is aab. To reject this string we need four states qo, i, g2 and gs. Since the string
aab has to be rejected, q3 can not be the final state and the rest of the states will be the
final states as shown below.

The machine enters into q; if the string has a sub string aab. In this state if we input any
number of a’s or/and b’s, the entire string has to be rejected. So, stay in the state q; only.
The machine for this is shown below.

In state qo, if the input symbol is b, stay in g so that if this b is followed by aab, the
machine enters into state g3 so that the strmg is rejected. The machine for this is shown

below. ab
| C @@
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In state q, if the input symbol is b, enter into state qg, so that if this b ends with the strmg
aab, the entire string is rejected. The machine for this is shown below.

b ' a,b
@@z

‘\b/

The machine will be in state q, if the string ends with aa. At this stage, if the input
symbol is a, again the string ends with aa and so stay in state q, only. The complete
machine to accept strings of a’s and b’s except those contammg the sub string aab is
shown in figure 2.16.

Fig.2.16 DFA to accept the string except the sub string aab.

So, the DFA M = (Q, %, 8, qo, F) where
Q = {QO, q1, Q2, Q3}

2 ={ab}
qo is the start state
F=1{qo, q1,q2}
d is shown using the transition table 2.7
I
) a b
L@ v
g “ @
“ 9 qs
i
d3 B Q3

Table 2.7 Transition table

Example 2.7: Obtain DFASs to accept strings of a’s and b’s having exactly one a, atleast
one a, not more than three a’s.

To accept exactly one a: To accept exactly one a, we need two states qo and q; and make
q; as the final state. The machine to accept one a is shown below.
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a AN

(1—).

In g, on input symbol b, remain qo onl)7 so that any number of b’s can end with one a.
The machine for this can be of the form

b

(1)

In state q;, on input symbol b remain in q; and the machine can take the form

But, in state q,, if the input symbol is a, the string has to be rejected as the machine can
have any number of b’s but exactly one a. So, the string has to be rejected and we enter
into a trap state g,. Once the machine enters into trap state, there is no way to come out of
the state and the string is rejected by the machine. The complete machine is shown in

figure 2.17.
b .b a,b
O e OO

Fig.2.17 DFA to accept exactly one a.

In set notation, the language accepted DFA can be represented as
’ L={b"ab"|m,n=0}
or
L={b'ab" }

The machine M = (Q, 2., 9, qo, F) where

Q = {qo, q1, q2}
2={ab}
B is the start state
F={qi} _
8 is shown below using the transition table 2.8.
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2o
" ) a b -
8 —>qo qi o
3 e q
d 9z 9: Q.

Table 2.8 Transition table

The machine to accept at least one a: The minimum string that can be accepted by the
machine is a. For this, we need two states qo and q; where q, is the final state. The
machine for this is shown below. '

—(®)—->@) |
In state qo, if the input symbol is b, remain in qo. Once the final state q: 1s reached,

whether the input symbol is a or b, the entire string has to be accepted. The machine to
accept at least one a is shown in figure 2.18. :

b ’ a,b
o0}
Fig.2.18 DFA to at least one a

In set notation, the language accepted DFA can be represented as
. L={b"a(a+b)" |[m,n>0}
or _
L ={ba(a+b)" }

The machine M = (Q, X, 8, qo, F) where

Q = {q()v Cll}
2 ={a, b}
‘Qo is the start state
F={q}
d is shown using the transition table 2.9
«2—
1 S a b
£ 50 |a @
2 |
l QD q

Table 2.9 Transition table
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The machine to accept not more than three a’s: The machine should accept not more
than three a’s means

= It can accept zero a’si.e., no a’s

* It can accept one a

» - Jtcan accepttwo a’s

» Itcanaccept3a’s

»  But, it can not accept more than three a’s.

In this machine maximum of three a’s can be accepted i.e., the machine can accept zero
a’s, one a, two a’s or three a’s. So, we need maximum four states qo, qi, q2 and q3 where
all these states are final states and qg is the start state. The machine can take the form

In state qs, if the input symbol is a, the string has to be rejected and we enter into a trap
state 4. Once this trap state is reached, whether the input symbol is a or b, the entire
string has to be rejected and remain in state gs. Now, the machine can take the form as
shown below. .

a,b
@@ @@

In state qo, qi, q2 and qs, if the input symbol is b, stay in their respective states and the
 final transition diagram is shown in fig.2.19.

~

" Fig.2.19 DFA to accept not more than 3 a’s

In set notation, the language accepted DFA can be represented as

L = { b™ab"ab’ab?|m, n, p,q 20}
or * ‘ * * * ‘
L={bababab}

The DFAM = (Q, X, 8, qo, F) where
Q ={q0, q1> 92, 93, Ga}
2 ={a,b}
qo is the start state
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F= {QO, QI, q2$ q3}
. d is shown using the transition table 2.10.

3

) a b
—) qQ1 Qo
I Q@ q
§ DR b
d q-: q3
Q | Q¢ Qs

Table 2.10 Transition table for DFA shown in fig.2.19
Example 2.8: Obtain a DFA to accept the language L = {awé | w e (a+b)*}

Here, w € (a+b)* indicates the string consisting of a’s and b’s of any length including the
null string. So, the language accepted by DFA is a string which starts with a, followed by
a string of a’s and b’s (possibly including € ) of any length and followed by one a. If w is
€ (epsilon i.e., the null string), the minimum string that can be accepted by the machine is
aa and so, we need three states qo, q; and q, to accept the string. The machine can be of

he fi

where qg is the start state and q is the final state. In state qp, if the input symbol is b, the
string has to be rejected and so, we enter into a trap state qs3. Once the machine enters into
trap state, whether the input is either a or b, the string has to be rejected and the machine
for this is shown below.

In state qy, if the input symbol is b, remain in q: and the machine takes the form
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In state q», if the input symbol is a, the string ends with a and so remain in.qa. In state qp,
if the input symbol is b, enter into state q; so that after inputting the symbol a, the

machine enters into qz. The complete machine is shown in fig.2.20.

Fig.2.20 DFA to accept awa.
So, the machine M = (Q, 2., 9, qo, F) where

Q =‘{q07 qla QZ, Q3}

2 ={ab}

qo is the start state

F={q.}

3 is shown using the transition table 2.11

«X—
) a b
—qo Qi 43
T
8 qQ Q@ 4
8
2 q G
q3 q; Qs

Table 2.11 Transition table for the DFA shown in fig. 2.20
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2.6  General procedure to design a FA

On the basis of construction of various FA’s we can arrive at the following general
procedure. Using this procedure, the number of errors in designing of FA will be
minimized.

Step 1: Identify the minimum string that can be accepted by the machine and draw the FA

Step 2: Make sure that there is one start state and at least one final state. :
Step 3: For the basic FA defined in step 1, consider one state at a time and obtain the various
transitions on each input symbol so that the string stated in the problem is accepted

Step 4: Make sure that no two transitions are defined for the same.symbol

Example 29: Obtain a DFA to accept set of strings such that number of a’s in every
string is a multiple of 3 where X = {a, b}

Solution: The string can be any combination of a’s and b’s. But, the number of a’s in those
strings should be multiples of 3 i.e., {0,3, 6,9, ....... }.

Step 1 and 2 : The basic FA can be written to accept multiples of three a’s with one start state q,
and one ﬁnal state qo as shown below

Step 2: Consider one state at a time and define the transitions for the input symbol b as shown
below:
Consider qy: g on baaa can be obtained as shown below:

ﬂve*ﬁ\

Qo Yo

Observe that qo on aaa the machine will go to final state qo. But, just before aaa, if we input b,
there should be a transition from gy to go. So, 8(qg, b) = qq. :

Consider q;: q, input symbol b can be obtained as shown below:

.QOfqunﬂqu xﬂ?—ﬁ} \qxo
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Basic string to be accepted is a a a. But, from the state g, on input symbol b, observe that the
machine has to be in q;. So, 8(qs, b) = q1. Similarly &q;, b) = q2. So, the final DFA is shown

below: ’ b | ’ b

Example 2.10: Obtain a DFA to accept strings of a’s and b’s having four a’s where X =
{a, b} -

Solution:
The minimum string that is accepted by FA is aaaa. So, the machine should have at least 5 states
as shown below: » :

From each state on b, the machine remains in the same state. So, the final DFA can be written as
shown below: '

Note: A dead state is state where the FA remains in the same state for any input symbol. Here, qs -
is a dead state.

Example 2.11: Obtain a DFA to accept even number of a’s and odd number of a’s.

Solution: The machine to accept even number of a’s is shown in fig.2.21.a and odd
number of a’s is shown in fig.2.21.b.

Fig. 2.21(a) Fig. 2.21(b)
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EXampIe 2.12: Draw a DFA to accept strings of a’s and b’s with even number of a’s and
b’s :

Solution: The machine to accept even number of a’s and b’s is shown in fig.2.22.

Fig.2.22 DFA to accept even no. of a’s and b’s

In set notation, the language accepted DFA can be represented as
L={ w|w e (a+b)" and N,(w) as well as Ny(w) is even }
or |
L={w|we (a+b)’ Na(w) mod 2 = 0 and Ny(w) mod 2 = 0}

Here, N, is the total number of a’s in the string w and Ny, is the total number of b’s in the
string w. ' :

Note: In the DFA shown in figure 2.22, instead of making qo as the final state, make q; as
the final state. The DFA to accept even number of a’s and odd number of b’s is obtained
and is shown in figure 2.23.

o0

' Fig.2.23 DFA to accept even 12110. of a’s and odd number of b’s

In set notation, the language accepted DFA can be represented as

L={w|we (a+h) and Ny(w) is even and Ny(w) is odd)
or
L={w|we (a+b)" Ny(w) mod 2 = 0 and Ny(W) mod 2 = 1}
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Note: In the DFA shown in figure 2.22, instead of making qo as the final state, make q; as
the final state. The DFA to accept odd number of a’s and even number of b’s is obtained
and is shown in figure 2.24. '

Fig.2.24 DFA to accept odd no. of a’s and even humber of b’s

In set notation, the language accepted DFA can be represented as
L={ w|we (a+b)” and Ny(w) is odd and Np(w) is even}
or
L={w|w e (a+b)" Ny(w) mod 2 = 1 and N(w) mod 2 =0}

Note: In the DFA shown in figure 2.22, instead of making qo as the final state, make q3 as
the final state. The DFA to accept odd number of a’s and odd number of b’s is obtained
and is shown in figure 2.25.

'Fig.2.25 DFA to accept odd no. of a’s and odd number of b’s
In set notation, the language accepted DFA can be represented as

L={w|w e (a+b)” and Ny(w) and Ny(w) is odd}
or
L={w|w e (a+b)" Ny(w) mod 2 = 1 and Ny(w) mod 2 = 1}

Example 2.13: Obtain a DFA to accept strings of a’s and b’s such that L = {w | we
(a+b) such that N,(w) mod 3 =10 and Ny(w) mod 2 =0}
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Solution: It is similar to the previous problem (figure 2.22) with the modifications shown below:

Note: If q, is the final state, the language accepted by above machine is
L={w|w e (a+b)" No(w) mod 3 = 1 and Ny(w) mod 2 = 0}
If g, is the final state, the language accepted by above machine is -
L={w|we (a+b)* Na(w) mod 3 = 2 and Np(w) mod 2 =0}
If g5 is the final state, the language accepted by above machine is
L={w|w e (a+b)" Ny(w) mod 3 = 0 and Ny,(w) mod 2 = 1}
If qa is the final state, the language accepted by above machine is
L={w]|we (a+b)" Ny(w) mod 3 = 1 and Ny(w) mod 2 = 1}
If g5 is the final state, the language accepted by above machine is
L={w|we (a+b)* Na(w) mod 3 =2 and Np(w) mod 2 =1}

Example 2.14: Obtain a DFA to accept strings of a’s and b’s such that the number of a’s
is divisible by 5 and number of b’s is divisible by 3.

Solution: It is similar to the previous problem (figure 2.22) with the modifications shown below:
a
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Based on the final state, the language accepted by the above machine changes as shown
below:
¢ If qois the final state, the language accepted by above machine is
L={w|we (a+b)” No(w) mod 5 = 0 and Ny(w) mod 3 = 0}
: or

The language accepted by the machine is the strings of a’s and b’s such that

number of a’s is divisible by 5 and number of b’s is divisible by 3.
¢ If q; is the final state, the language accepted by above machine is

o L={w|we(a+b)*Na(w)mod5=2andNb(w)mod3=l}
Thus, based on the final state, the language accepted by the machine changes.

Example 2.15: Obtain a DFA to accept strings of 0’s, 1’s and 2’s beginning with a ‘0’
followed by odd number of 1’s and ending with a ‘2.

The machine to accept the corresponding string is shown in figure 2.26.

Fig.2.26 DFA to accept the language { w | w € 0(11)"12 }

In set notation, the language accepted DFA can be represented as
L={w]|we 0(11)'12}

whidh is the language formed by words that begin with a ‘0’ followed by an odd number
of 1's and ending with a ‘2’.

Example 2.16: Obtain a DFA to accept odd and even numbers represented using binary
notation -

Before designing, let us think of how a problem can be solved. We know that any number
ending with 1 is odd and ending with 0 is even. So, whenever an input is 0, let us enter
into state q; and whenever the input is 1, we enter into state . When the machine is in
state qy, it accepts even number and when the machine is in state qp, it accepts odd umber.
The machine to accept binary odd and even numbers is shown in fig.2.27.
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Fig.2.27 DFA to accept binary odd and even numbers

Note: Whenever the machine is in state q;, even numbers are accepted and whenever the
machine is in g, odd numbers are accepted.

Example 2.17: Obtain a DFA to accept strings of 0’s and 1°s starting with at least two 0's
and ending with at least two 1’s.

The machine to accept the éonesponding language is shown in figure 2.28.

Fig.2.28 DFA to accept strings starting with at least two 0’s and ending with
at least two 1’s

In set notation, the language accepted DFA can be represented as
L={w|we 000+1)11}

which is the language formed by words that begin with at least two 0’s and ending with at
least two 1’s.

Example 2.18: Obtain a DFA to accept strings of a’s and b’s with at most two consecutive
b’s. '

The machine to-accept strings of a’s and b’s with at most two consecutive b’s is
shown below:.
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Example 2.19: Obtain a DFA to accept the language L={ w: |w|mod3 =0} on X = {a
b}.

Note that the string having a length of mod 3 should be accepted. Using the set notation,
the language can be denoted as
L = {&, aaa, aaaaaa, aaaaaaaaa, ...... and so on.}

Eachi string in the set L can be any combination of a’s and b’s with a length of multiples
of 3.(The example shows only strings of a’s). The machine to accept the corresponding
language is shown below:

Fig.2.30 DFA to accept words of |w| mod 3=0

Example 2.20: Obtain a DFA to accept the language L={w:|wmod5+#0}onZX={a,
b}.

The number of symbols in a string consisting of a’s and b’s should not have multiples of
5. The machine to accept the corresponding language is shown below:

a,b_p~Na,b @a,b
(@; 93

a,b
Fig.2.31 DFA to accept words of [w| mod 5+ 0

Example 2.21: Construct a DFA which accepts strings of 0’s and 1’s where the value of
each string is represented as a binary number. Only the strings representing zero modulo
five should be accepted. For example, 0000,0101,1010,1111 etc. should be accepted.
After constructing the DFA, obtain the minimum DFA.

~ Note: If each string represents a modulo 5, the modulo 5 integer may represent either 0, 1,
2, 3 or 4 (equivalent decimal value). For each number we shall represent states S, A, B, C
and D respectively. The states for the corresponding binary numbers can be obtained as
shown:
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Decimal Binary State
0 0000 S
1 0001 A
2 0010 B
3 0011 C
4 0100 D
5 0101 S
6 0110 A
7 0111 B
8 1000 C
9 1001 D
10 . 1010 S
11 1011 . A
12 1100 B
13 1101 C
14 1110 D
15 1111 S

and so on. By looking at the above table, we can easily construct the DFA and the
corresponding DFA is shown below:

After minimization, we get the same DFA. The DFA obtained can not be minimized.

Example 2.22: Obtain a DFA which accepts the set of all strings beginning with a 1 that
when interpreted as a binary integer, is a multiple of 5. For example, 101, 1010, 1111 etc
are multiples of 5. Note that 0101 is not beginning with 1 and it should not be accepted.

Note: The solution to this problem is almost similar to the previous problem. But, the
number always should start with a 1. If the strings starts with a 0, the number should
never be accepted. So, if the first symbols is 1, let us have a new start state qo and on
input symbol 1 enter into state A as shown below. '
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Example.2.23: Obtain a DFA to accept the language L = {w(ab + ba) | w e {a, b}*}

Solution: The DFA to accept the language L = {w(ab+ba) | w € {a, b}*} is shown
below: '

b .
Ekample 2.24: Obtain a DFA to accept the language L = {wbab | w € {a, b}*}

Solution: The DFA to accept the language L = {wbab | w € {a, b}*} is shown below:

Example 2.25: Obtain a DFA to accepts strings of a’s and'b’s such that each block of 5
consecutive symbols have at least two a’s
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In any of block of 5 consecutive symbols, if there are four or five b’s the entire string
should be rejected and so the trap state is reached. Otherwise, the string has at least two
a’s and the DFA is shown below:

2.7  Regular language

- In this section, let us see “What is a regular language?”’

Definition: Let M = (Q, 2, 3, qo, F) be a DFA. The language L is regular if there exists a
machine M such that L = L(M). That is, if a given language L is regular, definitely there
exists a DFA M which can accept the language L(M) such that L = L(M). In other words,
if a language is regular we can definitely obtain a DFA M which accepts the same
language. All the languages which have been accepted by the DFA’s we have discussed
so far are all regular.

Note 1: For a given language, if it is not possible to construct a DFA, the language is not
regular language. So, whenever we want to check whether a language is regular or, not,
try to construct DFA. If we have a DFA for that language, the language is regular and if it
is not possible to construct a DFA, the given language is not regular.

Note 2: We have obtained number of DFA’s accepting the various languages. Since
DFAs exists, all the corresponding languages are regular languages.
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2.8  Applications of Finite Automata

We should know that there are infinite number of applications that uses the concept of
finite automata in some form or the other. Any application that runs on the computer uses
this concept. This section covers very few applications where the concept of finite
autornata is used. Some of the applications of finite automata are:

1. String matching/processing

2. Compiler Construction

3. Other applications

String matching/processing

While editing the text using text editor usually we search for a specified string in a file
and then edit. In UNIX environment we will be using the UNIX program grep to search
for a specified pattern in a file. In general, searching for a specified string is a very
important activity in the field of computer science encouraging efficient algorithms to be
written for string matching. The finite automaton will help us devising the efficient
algorithms and test whether the program perfectly works or not even before its
implementation. The following section explains how a pattern matching or string
matching algorithm can be derived using finite automaton.

We know that DFA’s are one way of representing the language. In our example, a
language means a set of strings matching some pattern. Once the machine is ready to
accept the specified string, we can easily write an algorithm or a program to recognize
that pattern. We can test whether the pattern matches just by running the machine. Once
the pattern string matches using the machine, definitely our algorithm or program works
perfectly. There is no need to test it again. So, instead of explaining how to design an
algorithm, let us see how to construct a machine or how to draw a DFA using circles and
arrows. The pictorial representation of DFA using circles, arrows etc is nothing but the
state diagram or the transition diagram.

Let us write a DFA to check whether the pattern string “HELLO” is present in a
text file. The explanation is similar to the problem given in example 2.5. We are
interested in the characters ‘H’, ‘E’, ‘L’, ‘L’, ‘O’ in that sequence only for pattern
matching. Since the string length is 5, the maximum number of states will be 6. Let the 6
states be ‘S’, ‘H’, ‘HE’, ‘HEL’, ‘HELL’, ‘HELLO” where ‘S’ is the start state. For
simplicity, let us rename those states as qg, qi, 92, 43, g4 and gs and the initial diagram
can take the form as shown below:

O O O O O @
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It is clear from the figure that whenever

the machine is in state q, , it has so far accepted the character ‘H’
when in state q; , it has so far accepted ‘HE’

when in state qs , it has so far accepted ‘HEL’

when in state qq4 , it has so far accepted ‘HELL’

when in state qs , it has so far accepted ‘HELLO’

AR S

So, when the machine is in state gs, the pattern string is found and at this point, we
- can return true. If the machine is in any of the states such as qo, q, q2, q3 and qa, and if
the input symbol is ‘H’, there should be a transition to state q;. Other than those symbols
specified at the respective states, if any other symbol is encountered, there should be a
transition to the start state qo. It means that the longest prefix “HELLO” is not found in
the string and to recognize this string we have to start from the start state qo.. The
complete diagram is shown in figure 2.32.

Fig.2.32 Transition diagram to match the string “HELLO”
By looking at the above DFA, we can write the C program as shown below:

#define QO
#defineQl
-#tdefine Q2
#define Q3
#define Q4
#define Q5 .
#define TRUE 1

#define FALSE 0

N HEWN =



int search_pattern(char txt[])
{ |

int state;

int i;

’phar symbol;

state = QO;

for (i =0; i < strlen(txt); i++)
- |

symbol = txt[i];

switch (state)
{
case QO:
if (symbol == ‘H’) state = Ql;
break; »
case Q1: /* Recognizes the string H */
if (symbol == ‘E’)

_state = Q2;
else if (symbol != ‘H’)
state = QO;
break;

case Q2: /* Recognizes the string HE */
if (symbol == ‘H’)

state = Q1I;
else if (symbol == ‘L’)

state = Q3;
else

state = QO;
break; ’

case Q3: /* Recognizes the string HEL */
if (symbol == ‘H’)

state = Ql;
else if (symbol == ‘L)

state = Q4;
else

state = QO;

break;
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case Q4: /* Recognizes the string HELL */
if (symbol == ‘H’) .

state = Ql;
else if (symbol == ‘O’)
state = QS5;
else
state = QO;
break;

case Q5: /* Recognizes the string HELLO */
return TRUE;
}
} :
return FALSE;
| v

The above function returns TRUE whenever the sub string “HELLO” is present in the
text; otherwise, the function returns FALSE. Note that the string “HELLO” may appear
number of times. The above program can be modified with little bit of effort to return the
position of each occurrence of the string “HELLO” in the text.. This program can also be
modified to implement the grep command in UNIX.

Compiler Construction

The various compilers such as C/C++, Pascal, Fortran or any other compiler is designed
using the finite automata. The DFAs are extensively used in the building the various
phases of compiler such as '
® Lexical analysis (To identify the tokens, identifiers, to strip of the comments etc.)
® Syntax analysis (To check the syntax of each statement or control statement used
in the program)
Code optimization (To remove the un wanted code)
Code generation (To generate the machine code)

The details of the compiler construction is not the scope of this subject. Even then let us
see how the comments are eliminated from C programs using DFAs in lexical phase of
the compiler construction. We know that before actual compilation starts, all the
comments will be deleted and only the un-commented statements are used during the
compilation process. The C processor (part of C compiler) is used to strip the comments.
The DFA for this can take the form as shown in figure 2.33.
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Fig.2.33 Transition diagram to remove the C-comments

By lookmg at the DFA, we can easily write the C program (similar to the pattern
matching DFA and program in previous section). The transition table to strip out the

comments is shown in table 2.12.

I | «—2—>

) / * ‘n other
9o QG o 9o 9o
T qQ1 G 92 Go 9o

]

% ' %@ Q2 9B Q@ 9@
l L*E] q‘s’ G 9 9@
qa Gt Qo Jo Yo

Table 2.12 Transition table to strip out the comments in C program

- Other applications

The concept of finite automata is used in wide applications. It is not possible to list all the
applications as there are infinite number of applications. This section lists some

applications:

1. Large natural vocabularies can be described usmg finite automaton which
includes the applications such as spelling checkers and advisers, multi-language
dictionaries, to indent the documents, in calculators to evaluate complex
expressions based on the priority of an operator etc. to name a few. Any editor
that we use uses finite automaton for 1mplementat10n

2. Finite automaton is very useful in recognizing difficult problems i.e., sometimes it

is very essential to solve an un-decidable problem. Even though there is no

general solution exists for the specified problem, using theory of computation, we
can find the approximate solutions.
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3. Finite automaton is very useful in hardware design such as circuit verification, in
design of the hardware board (mother board or any- other hardware unit),
automatic traffic signals, radio controlled toys, elevators, automatic sensors,
remote sensing or controller etc.

4. In game theory and games, economics, computer graphics, linguistics etc., finite
automaton plays a very important role.

Exercises: -
What is DFA? Explain with an example
When we say that a language is accepted by the machine? Explain with example
When a given language is not accepted by DFA? Explain with example.
How DFA'’s can be represented? Explain with example
What is a transition diagram/graph?
Obtain a DFA to accept strings of a’s and b’s starting with the string ab
Draw a DFA to accept string of 0’s and 1’s ending with the string 011
Obtain a DFA to accept strings of a’s and b’s having a sub string aa
Obtain a DFA to accept strings of a’s and b’s except those containing the substring
aab
. Obtain DFAs to accept strings of a’s and b’s having exactly one a, atleast one a, not
more than three a’s.
11. Obtain a DFA to accept the language L = {awa | w € (a+b)* }
12. Obtain a DFA to accept even number of a’s, odd number of a’s
13. Obtain a DFA to accept strings of a’s and b’s having even number of a’s and b’s
14. Obtain a DFA to accept odd number of a’s and even number of b’s
15. Obtain a DFA to accept even number of a’s and odd number of b’s
16. Obtain a DFA to accept strings of a’s and b’s having odd number of a’s and b’s
17. Obtain a DFA to accept strings of 0’s, 1’s and 2’s beginning with a ‘0’ followed by
odd number of 1’s and ending with a ‘2’. '
18. Obtain a DFA to accept binary odd numbers
19. Obtain a DFA to accept strmgs of a’s and b’s starting with at least two a’s and endmg
with at least two b’s. : :
20. Obtain a DFA to accept strings of a’s and b’s with at most two consecutive b’s.

21. Obtain a DFA to accept the language L = { w : [w| mod 3=00n X ={a, b}.
22. Obtain a DFA to accept the language L={w:|w/ mod5+0o0nZX-={a, b}
23. What is a regular language? ;
24. What are the dpplications of finite automaton?

25. Draw a DFA to remove the comments from C program.

N A ol ol
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o

2.9 Non deterministic finite automata(NFA)

Consider the transition diagram shown in figure. 2.34. To start with the machine will be
in state qo. If the first input symbol is a, the machine can enter into either state q; or qz
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(since there are two transitions on input symbol a from state qo). In state qo, if the input
symbol is b the machine enters into state . Similarly from state g, there are multiple
transitions on an input symbol a to the states q; and gz i.e., the machine can either enter
into state g, or state q;. At this point of time, we can not determine exactly in which state
the machine will be. So, this is called Non Deterministic Finite Automaton (NFA).

Fig. 2.34 Transition diagram of an NFA

The transitions from each state of the machine shown in figure 2.34, based on the input
alphabets {a, b} are shown in table 2.13.

Current Input Next state Representation

State
o a_ 91,92 3(qe.2) = {q1,92}
qo b qz d(qo,b) = Q2
Qi a_ | qig2 8(q1,2) = {q1,92}
qQ b | doq: 3(qi.b) = {qo.q1}
q2 a |qx 3(q2,2) = q»
q2 b |aqi d(g2,b)=q

Table 2.13 Transitions for the machine shown in figure 2.34.

Consider only the transitions (last column in table 2.13) defined for the automaton. For
our convenience, the transitions can be written as shown below:

8(QO»a) = { q 1 aqz }
S(QO,b) = Q2
8qra) = {quq) o
© 8(qub) = {qoa)} set of subsets of Q i.e., 2
8(‘12,3) = q2 .
Sab) = @ Note: The set of subsets of set Q is called power

set and is denoted by 2%

v/

8: QXY to2¢
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where Q = {qo, qi; g2}, 2 = {0,1 }. Note that in each 8(q, a) defined above, g € Q and a
€ 2. The state qq is the initial state and the state with two concentric circles (ie., q2) is
the final state. With this concept, now, let us see “What is a non-deterministic finite
automata?” A. non-deterministic finite automaton (machine) can formally defined as
follows.

Definition: An NFA is a 5-tuple or quintuple M = (Q, X, §, qo, F) where
Q is non émpty, finite set of states.
2. is non empty, finite set of input alphabets.
) Qis transition. function which is a mapping from Q x X to subsets of
2% '
This function accepts two arguments as the input with first argument -
being q € Q and the second argument as the symbol a € 3. and returns
a set of states which are reachable from q on input a. This function
shows change of state from one state to a set of states based on the
input symbol.
Qo € Q is the start state.
F C Qs set of final states.

Suppose 8(q, a) =P where q € Q, P € 2%and a € 3. Here, there will be a transition form
state q to set of states P on an input symbol a. The transition function 3 can be extended

to & whenever string operations are involved. The transition from state q to set of states
P, on the input string w can be written as ) (g w)= P.

2.10 Properties of transition function

The different properties of the transition function are:

8a.8 = §(qe=gq 2.4
&g, wa) = §§ (q w),a)= P, 25
8q.aw) = § (5(q,2),w)=P, 2.6

whereqe Q,ae X, we X* and P; and Py are the set of states which are reachable from
q.

2.11 Acceptance of language

A string is a sequence of symbols obtained from Y. The set of all strings recognized by
an automaton is called language. The language L accepted by an NFAM=(Q,Y, 3, qo-
F) is defined as follows.



Finite Automata = 89

Definition: Let M = (Q, Y, 8, qo, F) be an NFA where Q is set of finite states, 2. is set of
input alphabets (from which a string can be formed), § is transition from Q x X to 2%, qo
is the start state and F is the final or accepting state. The string (also called language) w
accepted by an NFA can be defined in formal notation as:

L(M) = { w'| we Y*and & (qo, w) = P with at least one  component of Pin F }. Here,
P is set of states. ' :

2.12 Need for Non-deterministic finite automaton v

Digital computers are deterministic machines. Given the input, the state of the machine is
predictable. Sometimes, constructing deterministic machine is difficult compared to non-
deterministic machine. In such cases, there is a need to construct amachine very easily
which can be achieved by constructing an NFA. After constructing an NFA, DFA can be
easily constructed. This is an efficient mechanism to describe some complicated
languages concisely. So, practically non-deterministic machines will not exist. But, one
can construct an NFA easily and later that can be converted into DFA.

Example 2.26: Obtain an NFA to accept the following language L = {w | w € abab" or
aba" where n > 0}

The machine to accept abab” where n > 0 is shown below:

. b
(@2 (@) (@)

The machine to accept aba” where n 2 0 is shown below:

, s
.

Since both the machines accept a as the first input symbol, the states q1 and g5 can be
“merged into a single state and the machine to accept either abab” or aba" where n 2 0 is
shown below: ik
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2.13  Conversion from NFA to DFA (Subset construction method)

Let My = (Qn, 2N, ON, qb, Fn) be an NFA and accepts the language L(Mn). There should
be an equivalent DFA Mp = (Qp, Db, Op, qo, Fp) such that L(Mp) = L(My). The
procedure to convert an NFA to its equivalent DFA is shown below:

Step1:
The start state of NFA My is the start state of DFA Mp. So, add qo(which is the
start state of NFA) to Qp and find the transitions from this state. The way to
obtain different transitions is shown in step2. '
Step2: ’ : ,
For each state [q;, g;,....qk] in Qp, the transitions for each input symbol in Y can
be obtained as shown below:.
1. dp([qi, Gj»--..qxl, @) = dn(qi, @) U dn(q;, a) U ... On(qk, @)
= [q1, m,----qn) say.
2. Add the state [q), qm,.---Gn] to Qp, if it is not already in Qp.
3. Add the transition from [g;, gj,....qx] to [qi, Gm,.--.Qa] O the input symbol a iff
the state [qy, qum,.-..qn] is not added to Qp in the previous step.
Step3:
The state [qa, qb,....qc] € Qp is the final state, if at least one of the state in qa, qp,
..... qc € Fn i.e., at least one component in [qa, qb,....qc] should be the final state
of NFA. '

. Example 2.27: Convert the following NFA to its equivalent DFA.

'0 '1
@ 0,1 0,1 @

Stepl: qo is the start of DFA (see stepl in the conversion procedure).

So, Qo = {[qo]} - (2.7)

Step2: Find the new states from each state in Qp and obtain the corresponding
transitions.

I3

Consider the state [qo]:
Whena=0
Op(lge], 0) = Sn([qol, 0) -
= [CIO, QI]

(2.8)
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. Whena=1
Sp(Ige), 1) = dn(lqol, D)
= [qi]
€2.9)

Since the states obtained in (2.8) and (2.9) are not in Qp(2.7), add these two states to Qp
so that

Qo = {Iqol, [g0. qu}. [q1] } (2.10)

Consider the state [qo, q1]:
Whena=0

Sp([go, 1], 0) = n([qo. qil, 0)
= 3n(qo, 0) U dn(q1, 0)
= {qo.q1} U{qz}
= [qo, 91 q2]
(2.11)
Whena=1

n(lqo, a1l ) .
8N(q09 l) U SN(QI, 1)
{a1} - U {q2}

[q1, Q2]
(2.12)

dp([qo, q1l, 1)

Since the states obtained in (2.11) and (2.12) are the not defined in Qp(see 2.10), add
these two states to Qp so that

Qb = {[q0], 90 @], [q1], [0, 41> 421, [q1, @21 } (2.13)

Consider the state [q;]:
Whena=0 _
dp([q:1),0) - = dn([q1], 0)
= [q2}
(2.149)
Whena=1
8D([ql]s 1) = 5N([£11], 1)
= [qJ]

(2.15)
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Since the states obtained in (2.14) and (2.15) are same and the state gz is not in Qp(see
2.13), add the state g; to ,Qp so that

Qo = {[qo], [g0. q1], [q1], [0, q1, 21, [q1, q2], [q2]}  (2.16)
Consider the state [q¢,q1,q:]:

Whena=0
dn([q0.91,92], 0) on([q0,91,92], 0)

dn(qo, 0) U Sn(qy, 0) U 8n(qz, 0)

{90,901} U {q2} U {6} |

[90,91,92] (2.17)

oo

Whena =1
dp([q0,91,921, 1) n([90.91,G2], 1) |

dn(go, 1) U dn(qs, 1) U bn(qa, 1)

{91} U {q2} U {q2}

[q1, q2] (2.18)

Since tﬁe states obtained in (2.17) and (2.18) are not new states (are already in Qp, see
2.16), do not add these two states to Qp. :

Consider the state [91,92]:

Whena=0 )
dp([q1,q2,0) = 8n([g1,q2], 0)
= n(g1, 0) U dn(qz, 0)
= {q2} U {¢}
= lq2] (2.19)
Whena=1

dp([q1,92), 1) dn([q:1,q2]; 1)
dn(qr, 1) U dn(qa, 1)
{92} U {q:}

[q2] 2.20)

i n i n

Since the states obtained in (2.19) and (2.20) are not new states (are already in Qp see
2.16), do not add these two states to Qp.
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Consider the state [qa]:

Whena=0
do([q2], 0) = On([q2], 0)
= {¢}
2.21)
Whena=1
dp([q:2], 1) = On([q2]. D
= [qa]
2.22)

Since the states obtained in (2.21) and (2.22) are not new states (are alfeady in Qp, see
2.16), do not add these two states to Qp. The final transitional table along with transition

diagram is shown below:

<« ) >
5 0 1
T [q0] [Qual | la

- [0, 915 92] | [q1, Q2]

- [q:] (q:]
l [q0.q1.92] | [q1, q2]
Cang1 D | [a2] [q2]

[q2] ) [q.]

;




94 HFinite Automata and Formal Languages

2.14 Finite Automata with Epsilon transitions (-NFA)

Consider the transition diagram shown in figure 2.36. To start with the machine will be in
state qo. If the first input symbol is a, the machine ‘can enter into either state qo or q
(since there are two transitions on input symbol a from state qp). In state qo, if the input
symbol i$ b the machine enters into state q». Also, if the machine is in state qo and if there
is no input, the machine may stay in qo or it may enter .into q;/q; (using €-transitions).
Similarly from state q;, there are multiple transitions on an input symbol b to the states
d: and q; i.e., the machine can either enter into state q; or state q;. In this FA, we can not
determine exactly in which state the machine will be. So, this is Non Deterministic Finite
Automaton (NFA). Because of e-transitions, the NFA is called e-NFA.

Fig. 2.36 Transition diagram of an e-NFA

Before proceeding further, let us see “What is e-CLOSURE(q)?”’ The &-CLOSURE of
q is formally defined as follows:

Definition: e-CLOSURE(q) is read as e-CLOSURE of q and is the set of all states which
are reachable from q on &-transitions only. The recursive definition of e-CLOSURE(q) is:
1. e-CLOSURE(q) =qforeachqe Q.
2. If e-CLOSURE(q) = p and if &(p, €) = r then add r to e-CLOSURE(q) i.e.,
e-CLOSURE(q) = {p, r}

For the €-NFA shown in figure 2.36, the e-CLOSURE(q) for each q € Q is shown
below: .

€-CLOSURE(qo) = {q0, q1, 92}

e-CLOSURE(q)) = {q1, 2}

e-CLOSURE(q2) = {q2}

The transitions from each state of the machine shown in figure 2.36, based on the input
alphabets {a, b, c}and € (null character i.e., no input) are shown in table 2.15.



Finite Automata.- = 95

Current Input Next state Representation

State .
Qo a_ | 9o 3(qo.a) = {go.q:1 }
Jo b 19 d(qo,b) =q2
Jo c 1o
qo € 91,92 3(qo. €) = {qo.q1}
qi a ¢
q b |4d1,9 d(qi,b) = {q1.92}
qi c 1¢ '
qi € (9 8(q1,8) =q>
q2 a ¢
q b |¢
qQ c | 8(Q2.0)=q>
q2 € ()

Table 2.15 Transitions for the machine shown in figure 2.36.

Consider only the transitions (last column in table 2.15) defined for the automaton:

8(q0,2) = {901}, 8(qo,b) = q2, 8(qo, €) = {qo.q1}, 8(q1.b) = {q1.q2}, 8(q1; €) = q2, 8(q2,0) =
q2
For our convenience, the transitions can be written as shown below:

8((]0’3) = {CIO,QI }

d(qeb) = @

8(qoe) = {qoa} .

Sab) = {9} set of subsets of Q i.e., 22

3(q1.€ =

88; c§ - ;?2} Note: The set of subseéts of set Q is called power

set and is denoted by 22
v %\,_, \

& QxCue)to2?

where Q = {qo, q1> G2}, 2 = {a, b, c}. Note that in each d(q, a) defined above qe Q,ace
(X U €). The state qq is the initial state and the state with two concentric circles (i.e., qz2)
is the final state. With this concept, let us see “What is e-NFA?” A non-deterministic
finite automaton with e-moves (e-NFA) can formally be defined as follows.

Definition: An e-NFA is a 5-tuple or quintuple M = (Q, X, 3, qo, F) where
Q is non empty, finite set of states.
Y. is non empty, finite set of input alphabets.
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d is transition function which is a mapping from Q x (X, U €) to subsets

of 22
This function accepts two arguments as the input with first argument
being q € Q and the second argument as the symbol a € (3 U € ) and
returns a set of states after taking the e-CLOSURE of the states which
are reachable from q on input a. This function shows change of state
from one state to a set of states with or without the input symbol.

qo € Q is the start state.

F ¢ Qs set of final states.

Suppose &(q, a) = e-CLOSURE(P) whereqe Q,Pe 2%andae 3. Here, there will be a
transition form state q to set of states P on an input symbol a then take the &-

CLOSURE(P). The transition function & can be extended to & whenever string
operations are involved. The transition from state q to set of states P, on the input string
w can be written as ' ;

8 (q, w) = e-CLOSURE(P).

2.15 Properties of transition function

The different properties of the transition function are:

3(q, &) = 4 (q.€)= e-CLOSURE(q). 24
8 (g, wa) = &8 (q w).a)=e-CLOSURE®(S (g, w), a)). 25
8 (q.aw) = & (5(q,a), w)=e-CLOSURE(S (8(q, a), w)) 2.6

2.16 Acceptance of languag_e

A string is a sequence of symbols obtained from Y. The set of all strings recognized by
an automaton is called language. The language L accepted by an e NFA M = ( Q, X, §,
qo, F) is defined as follows.

Definition: Let M = (Q, 2., 8, qo, F) be an &-NFA where Q is set of finite states, Y. is set
of iné)l}t alphabets (from which a string can be formed), § is transition from Q x {Z U €}
to 2%, qo is the start state and F is the final or accepting state. The string (also called
language) w accepted by an NFA can be defined in formal notation as:

LM)={w]|we Y*and é (qo, w) = P with at least one component of PinF }

Example 2.28: Obtain an €-NFA which accepts strings consisting of zero or more a’s
followed by zero or more b’s followed by zero or more c’s.



